doi: 10.15389/agrobiology.2014.3.13eng

UDC 632:57.047:[582.288+595.7

BIOLOGICAL RELATIONSHIPS BETWEEN Fusarium FUNGI AND INSECTS (review)

T.Yu. Gagkaeva, I.V. Shamshev, O.P. Gavrilova, O.G. Selitskaya

All-Russian Research Institute of Plant Protection, Russian Academy of Agricultural Sciences,
3, sh. Podbelskogo, St. Petersburg—Pushkin, 196608 Russia,
e-mail t.gagkaeva@mail.ru, shamshev@mail.ru, olgavrilova1@yandex.ru, oselitskaya@mail.ru

Received November 26, 2013


Fusarium fungi are characterized by high metabolic activity and adaptability. They colonize plant substrates, participate in the destruction of organic materials and in soil formation, and can be harmful to insects and mammalians. Fusarium fungi and insects coexist in different biotopes. Using molecular methods to classify 140 fungi samples, isolated from insects, K. O’Donnell et al. (2012) identified at least 23 strains or strain complexes as the Fusarium species. A host range specificity of Fusarium fungi to insects is no still found. The co-evolution of these groups of organisms has resulted in the emergence of various forms of interactions between them. The antagonistic forms have unilateral action, which can lead to lethal and non-lethal effects to insects. In both cases, this interaction involves volatile (e.g., repellent) and nonvolatile (e.g., mycotoxins) secondary metabolites of fungi. Volatile organic compounds (VOCs) are the signal molecules (infochemicals, semiochemicals) which act as the insect pheromones, allomones, kairomones, etc. The research of Fusarium fungi VOC was initiated in the late 1990s, and there are few scientific publications on the subject for the time being. The Fusarium VOCs were shown to consist of a large number of components from the different groups of chemical compounds. The mechanisms, due to which the infestation of entomopathogenic Fusarium fungi into host insects occurs, differ fundamentally from those observed in other fungi: the Fusarium fungi enter the insect’s body through natural orifices, such as mouthparts, spiracles, ovipositor, or wounds, but not through the cuticle. Symbiotic interactions between Fusarium fungi and insects are very diverse and include both mutually beneficial co-existence (mutualism) and forms that could be described as commensalism. The role of insects in spreading of Fusarium spores on new substrates is well documented. An attractive effect of biologically active volatile metabolites of fungi has been shown. In a number of cases Fusarium fungi are a source of substances that are essential to maintain normal growth and development of some insects. Obviously, the various forms of relationships between Fusarium fungi and insects are an important evolutionary factor. Diverse forms of interactions between Fusarium fungi and insects allow forming their sustainable self-regulating ecosystems. Special attention is paid to possible interactions of Fusarium fungi and insect pests in case of their sharing cereal grains as an alimentary substrate.

Keywords: Fusarium fungi, insects, relationships, antagonistic and symbiotic interactions.

 

Full article (Rus)

 

REFERENCES

1. O’Donnell K., Humber R.A., Geiser D.M., Kang S., Park B., Robert V.A., Crous P.W., Johnston P.R., Aoki T., Rooney A.P., Rehner S.A. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia, 2012, 104(2): 427-445.
2. Teetor-Barsch G.H., Roberts D.W. Entomogenous Fusarium species. Mycopathologia, 1983, 84(1): 3-16. CrossRef
3. Mikunthan G., Manjunatha M. Fusarium semitectum, a potential mycopathogen against thrips and mites in chilli, Capsicum annuum. Communications in Agricultural and Applied Biological Sciences, 2006, 71: 449-463.
4. Pelizza S.A., Stenglein S.A., Cabello M.N., Dinolfo M.I., Lange C.E. First record of Fusarium verticillioides as an entomopathogenic fungus of grasshoppers. J. Insect Sci., 2011, 11(70): 1-8.
5. Wenda-Piesik A., Sun Z., Grey W.E., Weaver D.K., Morrill W.L. Mycoses of wheat stem sawfly (Hymenoptera: Cephidae) larvae by Fusarium spp. isolates. Environ. Entomol., 2009, 38(2): 387-394. CrossRef
6. Gordon W.L. The occurrence of Fusarium species in Canada. VI. Taxonomy and geographic distribution of Fusarium species on plants, insects and fungi. Can. J. Bot., 1959, 37: 257-290.
7. Sturz A.V., Johnston H.W. Characterization of Fusarium colonization of spring barley and wheat produced on stubble or fallow soil. Can. J. Plant Pathol., 1985, 7: 270-276.
8. Parry D.W., Jenkinson P., McLeod L. Fusarium ear blight (scab) in small grain cereals — a review. Plant Pathol., 1995, 44: 207-238. CrossRef
9. Kemp G.H.J., Pretorius Z.A., Wingfield M.J. Fusarium glume spot of wheat: A newly recorded mite-associated disease of South Africa. Plant Disease, 1996, 80: 48-51. CrossRef
10. Munkvold G.P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol., 2003, 109: 705-713.
11. Kal'vish T.K. Mikologiya i fitopatologiya, 1969, 3(5): 403-409.
12. Smirnoiff W.A. Fungus diseases affecting Adelges piceae in the fir forest of the Gaspe Peninsular, Quebec. The Canadian Entomologist, 1970, 102: 799-805.
13. Kuruvilla S., Jacob A. Comparative susceptibility of nymphs and adults of Nilaparvata lugens Stål to Fusarium oxysporum Schlect and its use in microbial control. Agricultural Research Journal of Kerala, 1979, 17(2): 287-288.
14. Leath T.K., Newton R.C. Interaction of a fungus gnat Bradysia sp. (Sciaridae) with Fusarium spp. on alfalfa and red clover. Phytopathology, 1969, 59: 257-258.
15. Kuruvilla S., Jacob A. Host range of the entomogenous fungus Fusarium oxysporum and its safety to three crop plants. Curr. Sci., 1979, 48: 603.
16. Hasan S., Vago C. The pathogenicity of Fusarium oxysporum to mosquito larvae. J. Invert. Pathol., 1972, 20: 268-271. CrossRef
17. Barson G. Fusarium solani, a weak pathogen of the larval stages of the large elm bark beetle Scolytus scolytus (Coleoptera: Scolytidae). J. Invert. Pathol., 1976, 27: 307-309.
18. Boucias D.G., Lietze V.-U., Teal P. Chemical signals that mediate insect-fungal interactions. In: Biocommunication of fungi. Springer Science, 2012: 305-336. CrossRef
19. Jelen H.H., Mirocha C.J., Wasowicz E., Kaminski E. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Applied and Environmental Microbiology, 1995, 61: 3815-3820.
20. Jelen H.H., Latus-Zietkiewicz D., Wasowicz E., Kaminski E. Trichodiene as a volatile marker for trichothecenes biosynthesis. J. Microbiol. Meth., 1997, 31: 45-49.
21. Bartelt R.J., Wicklow D.T. Volatiles from Fusarium verticillioides (Sacc.) Nirenberg and their attractiveness to nitidulid beetles. J. Agr. Food Chem., 1999, 47: 2447-2454.
22. Demyttenaere J.C.R., Morina R.M., Sandra P. Monitoring and fast detection of mycotoxin-producing fungi based on headspace solid-phase microextraction and headspace sorptive extraction of the volatile metabolites. J. Chrom., 2003, 985(1/2): 127-135. CrossRef
23. Demyttenaere J.C.R., Moriña R.M., De Kimpe N., Sandra P. Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J. Chrom., 2004, 1027: 147-154. CrossRef
24. Girotti J.R., Malbran G.A., Juarez M.P. Use of solid phase microextraction coupled to capillary gas chromatography-mass spectrometry for screening Fusarium spp. based on their volatile sesquiterpens. World Mycotoxin Journal, 2010, 3(2): 121-128.
25. McFarlane S.A., Rutherford S.R. Attraction of Eldana saccharina (Lepidoptera: Pyralidae) to certain Fusarium isolates in olfactory choice assays. Proc. of the South African Sugarcane Technologists’ Association, 2006, 80: 196-198.
26. Dowd P.F. Insect management to facilitate preharvest mycotoxin management. Aflatoxin and food safety — Part 1. Journal of Toxicology — Toxins Reviews, 2003, 22(2, 3): 327-350. CrossRef
27. Olejarski P., Horoszkiewicz-Janka J., Bocianowski J. Influence of fungi on feeding and development of granary weevil (Sitophilus granarius L.). In: Progress in plant protection. Poznan, Inst. of plant protection, 2010: 1711-1718.
28. Roberts D.W. Toxins of entomopathogenic fungi. In: Microbial control of pests and plant diseases 1970-1980. NY, 1981: 441-464.
29. Dogan Ö., Benlioglu S. Determination of disease incidence of fig endosepsis in mamme fruits of caprifigs. Bitki Koruma Bülteni, 2011, 51(3): 277-285.
30. Michailides T.J., Morgan D.P. Dynamics of Blastophaga psenes populations, availability of caprifigs, and fig endosepsis caused by Fusarium moniliforme. Phytopathology, 1994, 84: 1254-1263.
31. Bolton H.T., Hansens E.J. Ability of the house fly, Musca domestica, to ingest and transmit viable spores of selected fungi. Ann. Entomol. Soc. Am., 1970, 63(1): 98-100.
32. Darvas B., Bánáti H., Takács E., Lauber É., Szécsi Á., Székács A. Relationships of Helicoverpa armigera, Ostrinia nubilalis and Fusarium verticillioides on MON 810 Maize. Insects, 2011, 2(1): 1-11. CrossRef
33. Nelson P.E., Plattner R.D., Shackelford D.D., Desjardins A.E. Production of fumonisins by Fusarium moniliforme strains from various substrates and geographic areas. Appl. Environ. Microbiol., 1991, 57: 2410-2412.
34. Starratt A.N., Loschiavo S.R. Chemical stimuli from fungus Nigrospora sphaerica that induce aggregation of confused flour beetle, Tribolium confusum Duval, pest. Abstr. Papers Am. Chem. Soc., 1970: 21.
35. Phelan P.L., Lin H.C. Chemical characterization of fruit and fungal volatiles attractive to dried-fruit beetle, Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae). J. Chem. Ecol., 1991, 17: 1253-1272.
36. Honda H., Ishiwatari T., Matsumoto Y. Fungal volatiles as oviposition attractants for the yellow peach moth, Conogethes punctiferalis (Guenee) (Lepidoptera: Pyralidae). J. Insect Physiol., 1988, 34: 205-211.
37. Steiner S., Erdmann D., Steidle J.L., Ruther J. Host habitat assessment by a parasitoid using fungal volatiles. Frontiers in Zoology, 2007, 4: 3 (doi: 10.1186/1742-9994-4-3). CrossRef
38. Ramgareeb S., McFarlane S.A., Conlong D.E., Rutherford R.S. Identification of herbivore induced plant volatiles from push-pull plants and Fusarium species: aids for the management of Eldana saccharina Walker (Lepidoptera: Pyralidae) in sugarcane? Proc. of the South African Sugar Technologists' Association, 2010, 83: 262-266.
39. Wenda-Piesik A., Piesik D., Ligor T., Buszewski B. Volatile organic compounds (VOCs) from cereal plants infested with crown rot: their identity and their capacity for inducing production of VOCs in uninfested plants. Int. J. Pest Manag., 2010, 56(4): 377-383. CrossRef
40. Fiers M., Lognay G., Fauconnier M.-L., Jijakli M.H. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS ONE, 2013, 8(6): e66805 (doi:10.1371/journal.pone.0066805). CrossRef
41. Piesik D., Panka D., Delaney K.J., Skoczek A., Lamparski R., Weaver D.K. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Ou-lemaspp.), or fungal infection (Fusarium spp.). J. Plant Physiol., 2011, 168: 878-886.
42. Piesik D., Panka D., Jeske M., Wenda-Piesik A., Delaney K.J., Weaver D.K. Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore. J. Appl. Entomol., 2013, 137: 296-309.
43. Burov V.N., Petrova M.O., Selitskaya O.G., Stepanycheva E.A., Chermenskaya T.D., Shamshev I.V. Indutsirovannaya ustoichivost' rastenii k fitofagam [Induced plant resistance to phytopathogens]. Moscow, 2012.
44. Inge-Vechtomov S.G. Sorosovskii obrazovatel'nyi zhurnal, 1997, 11: 16-21.
45. Pittalwala I., White J.L. Science brief: New insect-disease complex strikes Southland trees. California Agriculture, 2012, 66(4): 121.
46. Eskalen A., Stouthamer R., Lynch S., Rugman-Jones P.F., Twizeyimana M., Gonzalez A., Thibault T. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in Southern California. Plant Dis., 2013, 97(7): 938-951.
47. Loke T.K., Norris D.M., Chu H.M. Sterol metabolism as a basis for a mutualistic symbiosis. Nature, 1970, 225: 661-662.
48. Jayaraman S., Parihar D.B. Isolation of a growth promoting pigment from foodgrains infested with Fusarium moniliforme. Indian J. Exp. Biol., 1975, 13(3): 313-314.
49. Rao H.R.G., Eugenio C., Christensen C.M., De Las Casas E., Harein P.K. Survival and reproduction of confused flour beetles exposed to fungus metabolites. J. Econ. Entomol., 1971, 64: 1563-1565.
50. Geshele E.E., Ivashchenko V.G. V sbornike: Voprosy genetiki, selektsii i semenovodstva [In: Genetics? plant breeding and seed reproduction. Issue 10]. Odessa, 1973, vypusk 10: 211-225.
51. Munkvold G.P., Desjardins A.E. Fumonisins in maize. Can we reduce their occurrence? Plant Dis., 1997, 81: 556-564.
52. Mongrain D., Couture L., Dubuc J.-P., Comeau A. Occurrence of the orange wheat blossom midge [Diptera: Cecidomyiidae] in Québec and its incidence on wheat grain microflora. Phytoprotection, 1997, 78: 17-22.
53. Mongrain D., Couture L., Comeau A. Natural occurrence of Fusarium graminearum on adult wheat midge and transmission to wheat spikes. Cereal Research Communications, 2000, 28(1/2): 173-180.
54. Cardwell K.F., Kling J.G., Maziya-Dixon B., Bosque-Pérez N.A. Interactions between Fusarium verticillioides, Aspergillus flavus and insects in four maize genotypes in lowland Africa. Phytopathology, 2000, 90: 276-284.
55. Schulthess F., Cardwell K.F., Gounou S. The effect of endophytic Fusarium verticillioides on infestation of two maize varieties by lepidopterous stemborers and coleopteran grain feeders. Phytopathology, 2002, 92: 120-128.
56. Latrasse A., Guichard E., Fournier N., Luc Le Quere J., Dufosse L., Spinnler H.E. Biosynthesis, chirality and flavour properties of the lactones formed by Fusarium poae. In: Developments in food science: Trends in flavour research. Elsevier, Amsterdam, 1994, 35: 493-498.
57. Pettersson H., Olvang H. Trichothecene production by Fusarium poae and its ecology. Sydowia, Special Issue, 1997: 217-218.
58. Gagkaeva T.Yu., Gavrilova O.P. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 6: 3-10.
59. Dunkel F.V. The relationship of insects to the deterioration of stored grain by fungi. Int. J. Food Microbiol., 1988, 7(3): 227-244. CrossRef
60. Boevé J.-L., Sonet G., Tamás N.Z., Symoens F., Altenhofer E., Häberlein C., Schulz S. Defense by volatiles in leaf-mining insect larvae. J. Chem. Ecol., 2009, 35: 507-517.
61. Okiwelu S.N., Adu O.O., Okonkwo V.N. The effect of Sitophilus zeamais (Mots) (Co-leoptera: Curculionidae) on the quality and viability of stored maize in Nigeria. Int. J.  Trop. Insect Sci., 1987, 8(3): 379-384.
62. Selitskaya O.G., Gavrilova O.P., Shchenikova A.V., Shamshev I.V., Gagkaeva T.Yu. Semiokhimicheskie vzaimodeistviya mezhdu gribami roda Fusarium i nasekomymi na primere zhuka risovogo dolgonosika. Materialy Mezhdunarodnoi nauchnoi konferentsii «Problemy mikologii i fitopatologii v XXI veke» [Proc. Int. Conf. «Problems of Mycology and Phytopathology in the XXI Century»]. St. Petersburg, 2013: 247-249.
63. Gagkaeva T.Yu., Gavrilova O.P., Shamshev I.V., Selitskaya O.G., Save-lieva E.I. Semiochemical interactions between toxigenic Fusarium fungi and insects. Book of abstracts of the 12th European Fusarium Seminar. Bordeaux, France, 2013: 109.

back