PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.2.274eng

UDC: 638.14/.15:579.62

Acknowledgements:
The authors are grateful to Yury S. Tokarev (All-Russian Research Institute of Plant Protection) for critical evaluation and revision of the manuscript.
Supported financially from the Russian Science Foundation (grant No. 18-16-00054)

 

NOSEMOSIS TYPE C OF BEES CAUSED BY MICROSPORIDIA Nosema (Vairimorpha) ceranae: CURRENT VIEWS, PATHOGENESIS, PREVENTION, DIAGNOSIS AND TREATMENT (review)

S.A. Timofeev , A.N. Ignatieva, V.V. Dolgikh

All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail ts-bio@ya.ru (✉ corresponding author), edino4estvo@mail.ru, dol1slav@yahoo.com

ORCID:
Timofeev S.A. orcid.org/0000-0001-6664-3971
Dolgikh V.V. orcid.org/0000-0002-2362-2633
Ignatieva A.N. orcid.org/0000-0001-7288-4077

Final revision received June 15, 2022
Accepted July 28, 2022

Nosemosis type C is a parasitic disease of honey bees caused by the obligate intracellular parasite microsporidia Nosema (Vairimorpha) cerana. This disease is widespread worldwide and can lead to a decrease in honey production, a sharp reduction in the population of adults in bee families and their final death (M. Higes et al., 2007; P.J. Marín-García et al., 2022). The purpose of this review is to present up-to-date data on this disease and its causative agent, as well as on modern methods of diagnosis, prevention and treatment in beekeeping. The parasite is mainly transmitted between bees by the fecal-oral route and infects the cells of the middle intestine of insects (R. Galajda et al., 2021).. Vertical transmission of the parasite is also possible, as N. ceranae spores have been found in ovarian cells of infected queens (C. Alaux et al., 2011). The pathogenesis of N. ceranae is associated with the destruction of infected cells, the restructuring of the host’s metabolic processes to meet the needs of the parasite, the shortage of spare resources and vital metabolites in sick bees. hormonal imbalance; negative consequences of part of the immune responses to the pathogen invasion, such as oxidative stress (L. Paris et al., 2017). Ability of N. ceranae specifically inhibits such protective reactions of bees as activation of apoptosis of infected cells and production of antimicrobial peptides can enhance the pathogenic nature of nosemosis type C (K. Antunez et al., 2009; C. Kurze et al., 2015). The method of diagnosis of infection includes the primary detection of the parasite using light microscopy, including with the use of various dyes (N.J. Ryan et al., 1993), and further determination of the species of microsporidia using molecular methods such as standard polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP). The most effective drug for the treatment of nosemosis of bees for a long time remained the antibiotic fumagillin, despite the fact that N. ceranae can acquire resistance to this drug (W.-F. Huang et al., 2013; I. Tlak Gajger et al., 2018). However, the discovery of residues of this drug in honey produced by bees after treatment and its toxicity to humans led to the prohibition of this drug in a number of countries and the cessation of its production in 2018 (I. Tlak Gajger et al., 2018). In this regard, many studies have been conducted in recent years aimed at finding new ways to treat nosemosis. For example, extracts from various fungi and plants, probiotics such as eugenol, chitosan, naringenin, proteksin, proteasome function inhibitors ixazomib, and ixazomib citrate are considered as agents for the treatment of this disease (V. Chaimanee et al., 2021; S.S. Klassen et al., 2021; E.M. Huntsman et al., 2021). Despite the fact that many of the tested methods have shown encouraging results, a safe analogue of fumagillin, similar to it in terms of the effectiveness of the fight against nosemosis, has not yet been found. The article also provides recommendations for the care of beehives for the prevention of nosemosis type C in beekeeping.

Keywords: Nosema ceranae, Vairimorpha ceranae, Apis mellifera, nosemosis, microsporidia, bee diseases.

 

REFERENCES

  1. Gallai N., Salles J.M., Settele J., Vaissiere B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 2009, 68(3): 810-821 CrossRef
  2. Klein A.M., Vaissiere B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. Importance of pollinators in changing landscapes for world. Proceedings of the Royal Society B: Biological Sciences,2007, 274(1608): 303-313 CrossRef
  3. Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 2010, 25(6): 345-353 CrossRef
  4. Potts S.G., Imperatriz-Fonseca V., Ngo H.T., Aizen M.A., Biesmeijer J.C., Breeze T.D., Dicks L.V., Garibaldi L.A., Hill R., Settele J., Vanbergen A.J. Safeguarding pollinators and their values to human well-being. Nature, 2016, 540: 220-229 CrossRef
  5. Brodschneider R., Gray A., Adjlane N., Ballis A., Brusbardis V., Charrière J-D., Chlebo R., Coffey M.F., Dahle B., de Graaf D.C., Dražić M.M., Evans G., Fedoriak M., Forsythe I., Gregorc A., Grzęda U., Hetzroni A., Kauko L., Kristiansen P., Martikkala M., Martín-Hernández R., Medina-Flores C.A., Mutinelli F., Raudmets A., Ryzhikov V.A., Simon-Delso N., Stevanovic J., Uzunov A., Vejsnæs F., Wöhl S., Zammit-Mangion M., Danihlík J. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. Journal of Apicultural Research, 2018, 57(3): 452-457 CrossRef
  6. Goulson D., Nicholls E., Botias C., Rotheray E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 2015, 347(6229): 1255957 CrossRef
  7. Spivak M., Mader E., Vaughan M., Euliss N.H. Jr. The plight of the bees. Environmental Science & Technology, 2011, 45(1): 34-38 CrossRef
  8. Fries I., Feng F., Da Silva A., Slemenda S.B., Pieniazek N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 1996, 32(3): 356-365 CrossRef
  9. Porrini M.P., Porrini L.P., Garrido P.M., Neto S., Porrini D.P., Muller F., Nuñez L.A., Alvarez L., Iriarte P.F., Eguaras M.J. Nosema ceranae in South American native stingless bees and social wasp. Microbial Ecology, 2017, 74: 761-764 CrossRef
  10. Plischuk S., Martín-Hernández R., Prieto L., Lucía M., Botías C., Meana A., Abrahamovich A.H., Lange C., Higes M. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environmental Microbiology Reports, 2009, 1(2): 131-135 CrossRef
  11. Fürst M.A., McMahon D.P., Osborne J.L., Paxton R.J., Brown M.J. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature, 2014, 506: 364-366 CrossRef
  12. Martín-Hernández R., Bartolome C., Chejanovsky N., Le Conte Y., Dalmon A., Dussaubat C., Dussaubat C., Meana A., Pinto M., Soroker V., Higes M. Nosema ceranae in Apis mellifera: a 12 years post-detection perspective: Environmental Microbiology, 2018, 20(4): 1302-1329 CrossRef
  13. Tokarev Y.S., Huang W.F., Solter L.F., Malysh J.M., Becnel J.J., Vossbrinck C.R. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of Invertebrate Pathology, 2020, 169: 107279 CrossRef
  14. Goblirsch M. Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie,2017, 49: 131-150 CrossRef
  15. Grupe A.C., Quandt C.A. A growing pandemic: a review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathogens, 2020, 16(6): e1008580 CrossRef
  16. Marín-García P.J., Peyre Y., Ahuir-Baraja A.E., Garijo M.M., Llobat L. The role of Nosema ceranae (Microsporidia: Nosematidae) in honey bee colony losses and current insights on treatment. Veterinary Sciences, 2022, 9(3): 130 CrossRef
  17. Higes M., Martín-Hernández R., Botías C., Bailón E.G., González-Porto A.V., Barrios L., Del Nozal M.J., Bernal J.L., Jiménez J.J., Palencia P.G., Meana A. How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 2008, 10(10): 2659-2669 CrossRef
  18. Galajda R., Valenčáková A., Sučik M., Kandráčová P. Nosema disease of european honey bees. Journal of Fungi, 2021, 7(9): 714 CrossRef
  19. Higes M., García-Palencia P., Martín-Hernández R., Meana A. Experimental infection of Apis mellifera honeybees with the microsporidia Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 2007, 94(3): 211-217 CrossRef
  20. Higes M., Martín-Hernández R., Garrido-Bailón E., González-Porto A.V., García-Palencia P., Meana A., Del Nozal M.J., Mayo R., Bernal M.J. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environmental Microbiology Reports, 2009, 1(2): 110-113 CrossRef
  21. Alaux C., Folschweiller M., McDonnell C., Beslay D., Cousin M., Dussaubat C., Brunet J.-L., Le Conte Y. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). Journal of Invertebrate Pathology, 2011, 106(3): 380-385 CrossRef
  22. Traver B.E., Williams M.R., Fell R.D. Comparison of within hive sampling and seasonal activity of Nosema ceranae in honey bee colonies. Journal of Invertebrate Pathology, 2012, 109(2): 187-193 CrossRef
  23. Higes M., Martín-Hernández R., García-Palencia P., Marín P., Meana A. Horizontal transmission of Nosema Ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environmental Microbiology, 2009, 1(6): 495-498 CrossRef
  24. Traver B.E., Fell R.D. Nosema ceranae in drone honey bees (Apis mellifera). Journal of Invertebrate Pathology, 2011, 107(3): 234-236 CrossRef
  25. Eiri D.M., Suwannapong G., Endler M., Nieh J.C. Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS ONE, 2015, 10(5): e0126330 CrossRef
  26. Copley T.R., Jabaji S.H. Honeybee glands as possible infection reservoirs of Nosema ceranae and Nosema apis in naturally infected forager bees. Journal of Applied Microbiology, 2012, 112(1): 15-24 CrossRef
  27. Chen Y.P., Evans J.D., Charles M., Robin G., Michael Z., Gundensen-Rindal D., Pettis J.S. Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. Journal of Eukaryotic Microbiology, 2009, 56(2): 142-147 CrossRef
  28. Higes M., García-Palencia P., Urbieta A., Nanetti A., Martín-Hernández R. Nosema apis and Nosema ceranae tissue tropism in worker honey bees (Apis mellifera). Veterinary Pathology, 2020, 57(1): 132-138 CrossRef
  29. Panek J., Paris L., Roriz D., Mone A., Dubuffet A., Delbac F., Diogon M., El Alaoui H. Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera. Journal of Invertebrate Pathology, 2018, 159: 121-128 CrossRef
  30. García-Palencia P., Martín-Hernández R., González-Porto A.V., Marin P., Meana A., Higes M. Natural infection by Nosema ceranae causes similar lesions as in experimentally infected caged-worker honey bees (Apis mellifera). Journal of Apicultural Research,2010, 49: 278-283 CrossRef
  31. Kumar V., Abbas A.K., Aster J.C. Cell injury, cell death, and adaptations. In: Robbins basic pathology. 9th ed. Elsevier Saunders, Philadelphia, 2012.
  32. Timofeev S., Tokarev Y., Dolgikh V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitology Research, 2020, 119: 1433-1441 CrossRef
  33. Dussaubat C.J., Brunet L., Higes M., Colbourne J.K., Lopez J., Choi J.H., Martín-Hernández R., Botías C., Cousin M., McDonnell C., Bonnet M., Belzunces L.P., Moritz R.F.A., Le Conte Y., Alaux C. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS ONE, 2012, 7(5): e37017 CrossRef
  34. Aufauvre J., Misme-Aucouturier B., Viguès B., Texier C., Delbac F., Blot N. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS ONE, 2014, 9(3): e91686 CrossRef
  35. Martín-Hernández R., Higes M., Sagastume S., Juarranz Á., Dias-Almeida J., Budge G.E., Meana A., Boonham N. Microsporidia infection impacts the host cell’s cycle and reduces host cell apoptosis. PLoS ONE, 2017, 12(2): e0170183 CrossRef
  36. Kurze C., Le Conte Y., Dussaubat C., Erler S., Kryger P., Lewkowski O., Müller T, Widder M, Moritz R.F.A. Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS ONE, 2015, 10(10): e0140174 CrossRef
  37. Dussaubat C., Maisonnasse A., Crauser D., Beslay D., Costagliola G., Soubeyrand S., Kretzchmar A., Le Conte Y. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. Journal of Invertebrate Pathology,2013, 113(1): 42-51 CrossRef
  38. Paris L., Roussel M., Pereira B., Delbac F.E., Diogon M. Disruption of oxidative balance in the gut of the western honeybee Apis mellifera to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microbial Biotechnology, 2017, 10(6): 1702-1717 CrossRef
  39. Higes M., Martín-Hernández R., Martínez-Salvador A., Garrido-Bailón E., González-Porto A.V., Meana A., Bernal J.L., Del Nozal M.J., Bernal J.A. Preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environmental Microbiology Reports, 2010, 2(2): 243-250 CrossRef
  40. Vidau C., Panek J., Texier C., Biron D.G., Belzunces L.P., Le Gall M., Broussard C., Delbac F., El Alaouiab H. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. Journal of Invertebrate Pathology,2014, 121: 89-96 CrossRef
  41. Mayack C., Naug D. Individual energetic state can prevail over social regulation of foraging in honeybees. Behavioral Ecology and Sociobiology, 2013, 67: 929-936 CrossRef
  42. Kuszewska K., Woyciechowski M. Risky robbing is a job for short-lived and infected worker honeybees. Apidologie, 2014, 45: 537-544 CrossRef
  43. Wolf S., McMahon D.P., Lim K.S., Pull C.D., Clark S.J., Paxton R.J., Osborne J.L. So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS ONE, 2014, 9(8): e103989 CrossRef
  44. Kurze C., Mayack C., Hirche F., Stangl G.I., Le Conte Y., Kryger P., Moritz R.F. Nosema spp. infections cause no energetic stress in tolerant honeybees. Parasitology Research, 2016, 115: 2381-2388 CrossRef
  45. Retschnig G., Williams G.R., Mehmann M.M., Yañez O., de Miranda J.R., Neumann P. Sex specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS ONE, 2014, 9(1): e85261 CrossRef
  46. Antúnez K., Martín-Hernández R., Prieto L., Meana A., Zunino P., Higes M. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 2009, 11(9): 2284-2290 CrossRef
  47. Li W., Chen Y., Cook S.C. Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees. International Journal for Parasitology, 2018, 48(6): 433-444 CrossRef
  48. Lourenço A.P., Guidugli-Lazzarini K.R., de Freitas N.H.A., Message D., Bitondi M. M.G., Simoes Z.L.P., Teixeira E.W. Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: the natural colony environment. Journal of Insect Physiology, 2021, 131: 104237 CrossRef
  49. Schwarz R.S., Evans J.D. Single and mixed species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Developmental & Comparative Immunology, 2013, 40(3-4): 300-310 CrossRef
  50. Li W., Evans J.D., Li J., Su S., Hamilton M., Chen Y. Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitology Research, 2017, 116: 3265-3274 CrossRef
  51. Dussaubat C., Maisonnasse A., Alaux C., Tchamitchan S., Brunet J.L., Plettner E., Belzunces L.P., Le Conte Y. Nosema spp. Infection alters pheromone production in honey bees (Apis mellifera). Journal of Chemical Ecology, 2010, 36: 522-525 CrossRef
  52. Goblirsch M., Huang Z.Y., Spivak M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE, 2013, 8: e58165 CrossRef
  53. Perry C.J., Søvik E., Myerscough M.R., Barron A.B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences USA, 2015, 112(11): 3427-3432 CrossRef
  54. Higes M., Martín-Hernandez R., Meana A. Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie, 2010, 41: 375-392 CrossRef
  55. Ryan N.J., Sutherland G., Coughlan K., Globan M., Doultree J., Marshall J., Baird R.W., Pedersen J., Dwyer B. A new trichrome-blue stain for detection of microsporidial species in urine, stool, and nasopharyngeal specimens. Journal of Clinical Microbiology, 1993, 31(12): 3264-3269 CrossRef
  56. Weber R., Bryan R.T., Owen R.L., Wilcox C.M., Gorelkin L., Visvesvara G.S. Improved light-microscopical detection of microsporidia spores in stool and duodenal aspirates. The enteric opportunistic infections working group. The New England Journal of Medicine, 1992, 326: 161-166 CrossRef
  57. Snow J.W., Ceylan Koydemir H., Karinca D.K., Liang K., Tseng D., Ozcan A. Rapid imaging, detection, and quantification of Nosema ceranae spores in honey bees using mobile phone-based fluorescence microscopy. Lab on a Chip, 2020, 19(5): 789-797 CrossRef
  58. Evans J.D., Schwarz R.S., Chen Y.P., Budge G., Cornman R.S., De la Rua P., de Miranda J.R., Foret S., Foster L., Gauthier L., Genersch E., Gisder S., Jarosch A., Kucharski R., Lopez D., Man Lun C., Moritz R.F.A., Maleszka R., Muñoz I., Pinto M.A. Standard methods for molecular research in Apis mellifera. Journal of Agricultural Research, 2013, 52(4): 1-54 CrossRef
  59. Erler S., Lommatzsch S., Lattorff H.M.G. Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris. Parasitology Research, 2012, 110: 1403-1410 CrossRef
  60. MacInnis C.I., Keddie B.A., Pernal S.F. Nosema ceranae (Microspora: Nosematidae): A sweet surprise? Investigating the viability and infectivity of N. ceranae spores maintained in honey and on beeswax. Journal of Economic Entomology, 2020, 113(5): 2069-2078 CrossRef
  61. Salkova D., Shumkova R., Balkanska R., Palova N., Neov B., Radoslavov G., Hristov P. Molecular detection of Nosema spp. in honey in Bulgaria. Veterinary Sciences, 2022, 9(1): 10 CrossRef
  62. Truong A-T., Sevin S., Kim S., Yoo M.S., Cho Y.S., Yoon B. Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR. Journal of Veterinary Science, 2021, 22(3): e40 CrossRef
  63. Lannutti L., Mira A., Basualdo M., Rodriguez G., Erler S., Silva V., Gisder S., Genersch, E., Florin-Christensen M., Schnittger L. Development of a loop-mediated isothermal amplification (LAMP) and a direct LAMP for the specific detection of Nosema ceranae, a parasite of honey bees. Parasitology Research, 2020, 119: 3947-3956 CrossRef
  64. Gochnauer T.A., Furgala B. Chemotherapy of nosema disease, compatibility of fumagillin with other chemicals. The American Bee Journal, 1969, 109: 309-311.
  65. Pietropaoli M., Skerl M.S., Cazier J., Riviere M.P., Tiozzo B., Eggenhoeffner R., Gregorc A., Haefeker W., Higes M., Ribarits A. BPRACTICES project: towards a sustainable European beekeeping. Bee World, 2020, 97(3): 66-69 CrossRef
  66. Formato G., Rivera-Gomis J., Bubnic J., Martín-Hernández R., Milito M., Croppi S., Higes M. Nosemosis prevention and control. Applied Sciences, 2022, 12(2): 783 CrossRef
  67. Mendoza Y., Diaz-Cetti S., Ramallo G., Santos E., Porrini M., Invernizzi C. Nosema ceranae winter control: study of the effectiveness of different fumagillin treatments and consequences on the strength of honey bee (Hymenoptera: Apidae) colonies. Journal of Economic Entomology, 2017, 110(1): 1-5 CrossRef
  68. Williams G.R., Sampson M.A., Shutler D., Rogers R.E.L. Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? Journal of Invertebrate Pathology,2008, 99(3): 342-344 CrossRef
  69. van den Heever J.P., Thompson T.S., Curtis J.M., Ibrahim A., Pernal S.F. Fumagillin: an overview of recent scientific advances and their significance for apiculture. Journal of Agricultural and Food Chemistry, 2014, 62(13): 2728-2737 CrossRef
  70. van den Heever J.P., Thompson T.S., Curtis J.M., Pernal S.F. Stability of dicyclohexylamine and fumagillin in honey. Food Chemistry, 2015, 179: 152-158 CrossRef
  71. Huang W.-F., Solter L.F., Yau P.M., Imai B.S. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathogens, 2013, 9(3): e1003185 CrossRef
  72. Tlak Gajger I., Ribarić J., Smodiš Škerl M., Vlainić J., Sikirić P. Stable gastric pentadecapeptide BPC 157 in honeybee (Apis mellifera) therapy, to control Nosema ceranae invasions in apiary conditions. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41(4): 614-621 CrossRef
  73. Jovanovic N.M., Glavinic U., Delic B., Vejnovic B., Aleksic N., Mladjan V., Stanimirovic Z. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Preventive Veterinary Medicine, 2021, 190: 105322 CrossRef
  74. Pașca C., Matei I.A., Diaconeasa Z., Rotaru A., Erler S., Dezmirean D.S. Biologically active extracts from different medicinal plants tested as potential additives against bee pathogens. Antibiotics, 2021, 10(8): 960 CrossRef
  75. Chaimanee V., Kasem A., Nuanjohn T., Boonmee T., Siangsuepchart A., Malaithong W., Sinpoo C., Disayathanoowat T., Pettis J.S. Natural extracts as potential control agents for Nosema ceranae infection in honeybees, Apis mellifera. Journal of Invertebrate Pathology, 2021, 186: 107688 CrossRef
  76. Glavinic U., Rajkovic M., Vunduk J., Vejnovic B., Stevanovic J., Milenkovic I., Stanimirovic Z. Effects of Agaricus bisporus mushroom extract on honey bees infected with Nosema ceranae. Insects, 2021, 12(10): 915 CrossRef
  77. Naree S., Benbow M.E., Suwannapong G., Ellis J.D. Mitigating Nosema ceranae infection in western honey bee (Apis mellifera) workers using propolis collected from honey bee and stingless bee (Tetrigona apicalis) hives. Journal of Invertebrate Pathology, 2021, 185: 107666 CrossRef
  78. Borges D., Guzmán-Novoa E., Goodwin P.H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms, 2021, 9(3): 481 CrossRef
  79. Klassen S.S., VanBlyderveen W., Eccles L., Kelly P.G., Borges D., Goodwin P.H., Petukhova T., Wang Q., Guzmán-Novoa E. Nosema ceranae Infections in honey bees (Apis mellifera) treated with pre/probiotics and impacts on colonies in the field. Veterinary Sciences, 2021, 8(6): 107 CrossRef
  80. Nanetti A., Ugolini L., Cilia G., Pagnotta E., Malaguti L., Cardaio I., Matteo R., Lazzer L. Seed meals from Brassica nigra and eruca sativa control artificial Nosema ceranae infections in Apis mellifera. Microorganisms, 2021, 9(5): 949 CrossRef
  81. Ugolini L., Cilia G., Pagnotta E., Malaguti L., Capano V., Guerra I., Zavatta L., Albertazzi S., Matteo R., Lazzeri L., Righetti L., Nanetti A. Glucosinolate bioactivation by Apis mellifera workers and its impact on Nosema ceranae infection at the colony level. Biomolecules, 2021, 11(11): 1657 CrossRef
  82. Braglia C., Alberoni D., Porrini M.P., Garrido P.M., Baffoni L., Di Gioia D. Screening of dietary ingredients against the honey bee parasite Nosema ceranae. Pathogens,2021, 10(9): 1117 CrossRef
  83. Valizadeh P., Guzman-Novoa E., Petukhova T., Goodwin P.H. Effect of feeding chitosan or peptidoglycan on Nosema ceranae infection and gene expression related to stress and the innate immune response of honey bees (Apis mellifera). Journal of Invertebrate Pathology, 2021, 185: 107671 CrossRef
  84. He N., Zhang Y., Duan X.L., Li J.H., Huang W.F., Evans J.D., DeGrandi-Hoffman G., Chen Y.P., Huang S.K. RNA Interference-mediated knockdown of genes encoding spore wall proteins confers protection against Nosema ceranae infection in the European honey bee, Apis mellifera. Microorganisms, 2021, 9(3): 505 CrossRef
  85. Rodríguez-García C., Heerman M.C., Cook S.C., Evans J.D., DeGrandi-Hoffman G., Banmeke O., Zhang Y., Huang S., Hamilton M., Chen Y.P. Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathogens, 2021, 17(2): e1009270 CrossRef
  86. Huntsman E.M., Cho R.M., Kogan H.V., McNamara-Bordewick N.K., Tomko R.J.Jr., Snow J.W. Proteasome inhibition is an effective treatment strategy for microsporidia infection in honey bees. Biomolecules, 2021, 11(11): 1600 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)