PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.2.313eng

UDC: 636.52/.58:591.1:579.2:577.2

Acknowledgements:
Supported financially by the Russian Science Foundation, grant No 22-66-00061 “Expression of productivity and resistibility related genes in chickens of new Russian broiler cross Smena-9 and its effects on immunity and realization of genetic productivity potential with different energy and amino acid nutrition”

 

EXPRESSION OF GENES OF IMMUNE RESPONSE AND ADAPTATION AND CECAL MICROBIOME COMPOSITION IN MALES AND FEMALES OF CHICKENS (Gallus gallus L.) IN CM5 AND CM9 PREPARENTAL LINES OF SMENA 9 CROSS

G.Yu. Laptev1, E.A. Yildirim1, 2 , L.A. Ilyina1, 2, V.A. Filippova1, 2, K.A. Kalitkina1, E.S. Ponomareva1, A.V. Dubrovin1, D.G. Tyurina1, V.I. Fisinin3, I.A. Egorov3, T.A. Egorova3, V.A. Manukyan3, T.N. Lenkova3

1JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail laptev@biotrof.ru, kseniya.k.a.@biotrof.ru, dubrovin@biotrof.ru, tiurina@biotrof.ru;
2Saint Petersburg State Agrarian University, 2, lit. A, Peterburgskoye sh., St. Petersburg, 196601 Russia, e-mail deniz@biotrof.ru (* corresponding author), ilina@biotrof.ru;
3Federal Scientific Center All-Russian Research and Technological Institute of Poultry RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail fisinin@vnitip.ru, olga@vnitip.ru, eta164@yandex.ru, vard13@yandex.ru, dissovet@vnitip.ru

ORCID:
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Tyurina D.G. orcid.org/0000-0001-9001-2432
Yildirim E.A. orcid.org/0000-0002-5846-4844
Fisinin V.I. orcid.org/0000-0003-0081-6336
Ilyina L.A. orcid.org/0000-0003-2490-6942
Egorov I.A. orcid.org/0000-0001-9122-9553
Filippova V.A. orcid.org/0000-0001-8789-9837
Egorova T.A. orcid.org/0000-0002-5102-2248
Kalitkina K.A. orcid.org/0000-0002-9541-6839
Manukyan V.A. orcid.org/0000-0003-4564-4427
Ponomareva E.S. orcid.org/0000-0002-4336-8273
Lenkova T.N. orcid.org/0000-0001-8026-3983
Dubrovin A.V. orcid.org/0000-0001-8424-4114

Final revision received November 21, 2022
Accepted July 18, 2022

The Cornish and Plymouthrock breeds form the basis of modern specialized meat crosses of chickens. The selection of the paternal line of the Cornish CM5 breed of the new Russian cross of meat chickens Smena 9 is carried out mainly on the basis of meat productivity, while the maternal line of the Plymouthrock CM9 breed is primarily for reproductive efficiency and viability at a lower live growth rate than that of the CM5 line masses. In the present study, we revealed for the first time that hens and roosters of the parent stock of lines CM5 and CM9 of the novel cross Smena 9 differ in the expression of some immunity and adaptation genes, as well as in the composition of the microbiome and its putative metabolic pathways. Differences are related to genotype and sex. The aim of the work was to compare the level of expression of immunity genes and genes associated with adaptive potential, respectively, in the tissues of the bursa in the liver, as well as the composition and functions of the microbiome of the caecum of the intestine in chickens and roosters of the CM5 and CM9 lines. The experiments were carried out in the vivarium of the Zagorsk EPH (Moscow Province, 2022) on the parent stock of chickens and roosters of the CM5 and CM9 lines of 39 weeks of age, kept under identical conditions and receiving the same diet. From each line and gender, tissue samples were taken from five individuals with a close live weight. Analysis of gene expression in tissue samples was performed using quantitative reverse transcription PCR (RT-qPCR). Total RNA was isolated using the Aurum™ Total RNA mini kit (Bio-Rad, USA). PCR amplification was performed using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad, USA) and a detecting amplifier DTlight (DNA-Technology, Russia). In the liver tissues, we analyzed the expression of genes associated with the adaptive potential: genes CAT1 of the transporter of cationic amino acids 1, HSF1 and HSF2 — transcription factors of heat shock proteins 1 and 2, SOD — superoxide dismutase, Gpx1 — glutathione peroxidase, HO-1 — heme oxygenase-1. In the tissues of the bursa, the expression of genes associated with immunity was analyzed: genes IL8 — interleukin-8, IRF7 — regulatory factor interferon 7, PTGS2 — prostaglandin endoperoxide synthase, AvBD1, AvBD2, AvBD9 and AvBD10 — β-defensins 1, 2, 9 and 10, Casp6 — caspase 6. A primer for the β-actin gene (ACTB) was used as a reference control. The relative level of expression was assessed by the 2-ΔΔCT method. Total DNA for analysis of the composition of the microbiome was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Inc., USA). The caecal bacterial community was assessed by NGS sequencing on the MiSeq platform (Illumina, Inc., USA) with primers for the V3-V4 region of the 16S rRNA gene. The reconstruction and prediction of the functional content of the metagenome, gene families, and enzymes was carried out using the PICRUSt2 software package (v. 2.3.0). Mathematical and statistical processing of the results was carried out by the method of multivariate analysis of variance (ANOVA) in Microsoft Excel XP/2003 and R-Studio (v. 1.1.453). The results obtained showed an increase in the expression of the HSF1 and HSF2 genes in CM5 cocks compared to other groups (p ≤ 0.05), in particular, the difference with CM9 cocks was 68 and 218 %, respectively (p ≤ 0.05). The expression of the HSF1 and HSF2 genes within the CM5 line in roosters was 1.6 and 3.0 times higher, respectively, than in hens (p ≤ 0.05). Significant activation of the expression of antimicrobial peptides and pro-inflammatory genes occurred in CM9 cocks compared to CM5 cocks and hens (p ≤ 0.05). The expression of AvBD2, AvBD9, AvBD10, IL8 and PTGS2 genes in CM9 cocks increased 7.6-, 5.3-, 2.1-, 6.3- and 1.5-fold (p ≤ 0.05), respectively, compared to CM5 cocks. NGS sequencing showed that the microbiome of the caecum of the CM9 hens and roosters contained bacteria of the superphylum Elusimicrobiota (0.32±0.11 and 0.49±0.19 %, respectively). These microorganisms did not occur in CM5 roosters while in the SM5 hens, their proportion was 0.04±0.01 %. Significant (p ≤ 0.05) differences were found between the groups in 25 genera, in some genera, it depends on the genotype, in others — on the sex of the bird. For example, in cocks of the CM5 line, the abundance of microorganisms of the genera Barnesiella, Clostridia_UCG-014 and Frisingicoccus was 17.2, 2.0 and 4.9 times higher (p ≤ 0.05), respectively, than in males of the CM9 line. Members of the genus Desulfovibrio were present in the intestines of CM5 and CM9 cocks (0.25±0.08 and 0.73±5.6 %). However, we did not find these microorganisms in the intestines of hens of both lines. Based on the results of bioinformatics reconstruction and functional annotation of NGS sequencing data, we identified 357 putative metabolic pathways in the gut microbial community, 65 of which differed (p ≤ 0.05) between test groups. Genotype- and sex-specific modifications in gene expression, as well as in the structure and function of the gut microbiome, may provide adaptation of a macroorganism under changing conditions.

Keywords: broiler cross, Smena 9, caecum, microbiome, NGS sequencing, predicted metabolic pathways, gene expression, immunity, adaptations, bursa, liver.  

 

REFERENCES

  1. Emanuylova Zh.V., Egorova A.V., Efimov D.N., Komarov A.A. Agrarnaya nauka, 2021, 7-8: 33-36 CrossRef (in Russ.).
  2. Dorshorst B.J., Ashwell C.M. Genetic mapping of the sex-linked barring gene in the chicken. Poultry Science, 2009, 88(9): 1811-1817 CrossRef
  3. Konopleva A.P., Efimov D.N., Baykovskaya E.Yu., Emanuylova Zh.V. Ptitsevodstvo, 2021, 11: 16-20 CrossRef (in Russ.).
  4. Egorova A.V., Efimov D.N., Emanuylova Zh.V., Komarov A.A. Ptitsevodstvo, 2021, 3: 4-8 CrossRef (in Russ.).
  5. Lopez G., de Lange K., Leeson S. Partitioning of retained energy in broilers and birds with intermediate growth rate. Poultry Science, 2007, 86(10): 2162-2171 CrossRef
  6. Davis R.V., Lamont S.J., Rothschild M.F., Persia M.E., Ashwell C.M., Schmidt C.J. Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth. PLoS ONE, 2015, 10(3): e0122525 CrossRef
  7. Huang L., Hu Y., Guo Q., Chang G., Bai H. Time-course transcriptome landscape of bursa of Fabricius development and degeneration in chickens. Agriculture, 2022, 12(8): 1194 CrossRef
  8. Désert C., Duclos M.J., Blavy P., Lecerf F., Moreews F., Klopp C., Aubry M., Herault F., Le Roy P., Berri C., Douaire M., Diot C., Lagarrigue S. Transcriptome profiling of the feeding-to-fasting transition in chicken liver. BMC Genomics, 2008, 9: 611 CrossRef
  9. Li J., Liu X., Xing L., Liu H., Li X., Bao J. Gene expression profiling of broiler liver under cold stress by high-throughput sequencing technology. Journal of Poultry Science, 2017, 54(3): 185-196 CrossRef
  10. Sheng Z., Pettersson M.E., Hu X., Luo C., Qu H., Shu D., Shen X., Carlborg O., Li N. Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. BMC Genomics, 2013, 14: 151 CrossRef
  11. Zheng X., Zhang B., Zhang Y., Zhong H., Nie R., Li J., Zhang H., Wu C. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Scientific Reports, 2020, 10: 12088 CrossRef
  12. Zhao L., Wang G., Siegel P., He C., Wang H., Zhao W., Zhai Z., Tian F., Zhao J., Zhang H., Sun Z., Chen W., Zhang Y., Meng H. Quantitative genetic background of the host influences gut microbiomes in chickens. Scientific Reports, 2013, 3: 1163 CrossRef
  13. Song J.S., Woodhams D.C., Martino C., Allaband C., Mu A., Javorschi-Miller-Montgomery S., Suchodolski J.S., Knight R. Engineering the microbiome for animal health and conservation. Experimental Biology and Medicine, 2019, 244(6): 494-504 CrossRef
  14. Kogut M.H. The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 2018, 250(1): 32-40 CrossRef
  15. Wankhade U.D., Zhong Y., Lazarenko O.P., Chintapalli S.V., Piccolo B.D., Chen J.-R., Shankar K. Sex-specific changes in gut microbiome composition following blueberry consumption in C57BL/6J mice. Nutrients, 2019, 11(2): 313 CrossRef
  16. Yyldyrym E.A., Grozina A.A., Vertiprakhov V.G., Il’ina L.A., Filippova V.A., Laptev G.Yu., Brazhnik E.A., Kalitkina K.A., Tarlavin N.V., Dubrovin A.V., Novikova N.I., Tyurina D.G. Effect of T-2 toxin on expression of genes associated with immunity in tissues of the blind processes of the intestinal and pancreas of broilers (Gallus gallus L.). Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2021, 56(4): 664-681 CrossRef
  17. Egorov I.A., Lenkova T.N., Manukyan V.A., Egorova T.A., Nikonov I.N., Il’ina L.A., Laptev G.Yu. Poultry diets without antobiotics. I. Intestinal microbiota and performance of broiler (Gallus gallus L.) breeders fed diets with enterosorbent possessing phytobiotic and probiotic effects. Sel'skokhozyaistvennaya biologiya[Agricultural Biology], 2019, 54(2): 280-290. CrossRef
  18. Yyldyrym E.A., Grozina A.A., Vertiprakhov V.G., Il’ina L.A., Filippova V.A., Laptev G.Yu., Ponomareva E.S., Dubrovin A.V., Kalitkina K.A., Molotkov V.V., Akhmatchin D.A., Brazhnik E.A., Novikova N.I., Tyurina D.G. Composition and metabolic potential of the intestinal microbiome of Gallus gallus L. broilers under experimental T-2 toxicosis as influenced by feed additives. Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2022, 57(4): 743-761 CrossRef
  19. Jašarević E., Morrison K.E., Bale T.L. Sex differences in the gut microbiome-brain axis across the lifespan. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2016, 371(1688): 20150122 CrossRef
  20. Yang X., Schadt E.E., Wang S., Wang H., Arnold A.P., Ingram-Drake L., Drake T.A., Lusis A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Research, 2006, 16(8): 995-1004 CrossRef
  21. Niemann H., Kuhla B., Flachowsky G. Perspectives for feed-efficient animal production. Journal of Animal Science, 2011, 89(12): 4344-4363 CrossRef
  22. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS № 123) (Strasburg, 18.03.1986). Available: https://norecopa.no/legislation/council-of-europe-convention-ets-123/. No date.
  23. Efimov D.N., Egorova A.V., Emanuylova Zh.V., Ivanov A.V., Konopleva A.P., Zotov A.A., Lukashenko V.S., Komarov A.A., Egorova I.A., Egorova T.A., Baykovskaya E.Yu., Manukyan V.A., Saleeva I.P., Kavtarashvili A.Sh., Smolov S.V. Rukovodstvo po rabote s ptitsey myasnogo krossa Smena 9 s autoseksnoy materinskoy roditel’skoy formoy /Pod redaktsiey D.N. Efimova, V.I. Fisinina [Manual for working with meat cross-country poultry Smena9 with autosex maternal parental form. D.N. Efimov, V.I. Fisinin (eds.)]. Sergiev Posad, 2021 (in Russ.).
  24. Zeka F., Vanderheyden K., Smet E., Cuvelier C., Mestdagh P., Vandesompele J. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Scientific Reports, 2016, 6: 21418 CrossRef
  25. Grigor’eva M.A., Velichko O.A., Shabaldin S.V., Fisinin V.I., Suray P.F. Vitagene regulation as a new strategy to fight stresses in poultry production. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(4): 716-730 CrossRef
  26. Meza Cerda M.-I., Gray R., Higgins D.P. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion (Neophoca cinerea) and other mammals. PeerJ, 2020, 8: e10306 CrossRef
  27. Laptev G.Y., Filippova V.A., Kochish I.I., Yildirim E.A., Ilina L.A., Dubrovin A. V, Brazhnik E.A., Novikova N.I., Novikova O.B., Dmitrieva M.E., Smolensky V.I., Surai P.F., Griffin D.K., Romanov M.N. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella enteritidis and fed a phytobiotic. Animals, 2019, 9(9): 615 CrossRef
  28. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4): 402-408 CrossRef
  29. Rabindran S.K., Giorgi G., Clos J., Wu C. Molecular cloning and expression of a human heat shock factor, HSF1. Proceeding of the National Academy of Sciences of USA, 1991, 88(16): 6906-6910 CrossRef
  30. Cedraz H., Gromboni J.G.G., Garcia A.A.P. Junior, Farias Filho R.V., Souza T.M., Oliveira E.R., Oliveira E.B., Nascimento C.S.D., Meneghetti C., Wenceslau A.A. Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS ONE, 2017, 12(10): e0186083 CrossRef
  31. McManus C.J., Coolon J.D., Duff M.O., Eipper-Mains J., Graveley B.R., Wittkopp P.J. Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Research, 2010, 20(6): 816-825 CrossRef
  32. Zuidhof M.J., Schneider B.L., Carney V.L., Karver D.R., Robinson F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science, 2014, 93(12): 2970-2982 CrossRef
  33. Oliver F., Christians J.K., Liu X., Rhind S., Verma V., Davison C., Brown S.D.M., Denny P., Keightley P.D. Regulatory variation at glypican-3 underlies a major growth QTL in mice. PLoS Biology, 2005, 3(5): e135 CrossRef
  34. Rodriguez K.A., Valentine J.M., Kramer D.A., Gelfond J.A., Kristan D.M., Nevo E., Buffenstein R. Determinants of rodent longevity in the chaperone-protein degradation network. Cell Stress & Chaperones, 2016, 21(3): 453-466 CrossRef
  35. Li Y., Ma Q.G., Zhao L.H., Wei H., Duan G.X., Zhang J.Y., Ji C. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. International Journal of Molecular Sciences, 2014, 15(4): 5649-5662 CrossRef
  36. Otterbein L.E., Foresti R., Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circulation Research, 2016, 118(12): 1940-1959 CrossRef
  37. Surai P.F., Fisinin V.I., Karadas F. Antioxidant systems in chick embryo development. Pt. 1. Vitamin E, carotenoids and selenium. Animal Nutrition, 2016, 2(1): 1-11 CrossRef
  38. Johnsson M., Henriksen R., Höglund A., Fogelholm J., Jensen P., Wright D. Genetical genomics of growth in a chicken model. BMC Genomics, 2018, 19(1): 72 CrossRef
  39. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology, 2003, 3(9): 710-720 CrossRef
  40. Lynn D.J., Higgs R., Lloyd A.T., O'Farrelly C., Hervé-Grépinet V., Nys Y., Brinkman F.S., Yu P.L., Soulier A., Kaiser P., Zhang G., Lehrer R.I. Avian beta-defensin nomenclature: a community proposed update. Immunology Letters, 2007, 110(1): 86-89 CrossRef
  41. Lee M.O., Jang H.J., Rengaraj D., Yang S.Y., Han J.Y., Lamont S.J., Womack J.E. Tissue expression and antibacterial activity of host defense peptides in chicken. BMC Veterinary Research, 2016, 12(1): 231 CrossRef
  42. Antonopoulos A.S., Papanikolaou E., Vogiatzi G., Oikonomou E., Tousoulis D. Anti-inflammatory agents in peripheral arterial disease. Current Opinion in Pharmacology, 2017, 39(1): 1-8 CrossRef
  43. Rychlik I., Elsheimer-Matulova M., Kyrova K. Gene expression in the chicken caecum in response to infections with nontyphoid Salmonella. Veterinary Research, 2014, 45(1): 119 CrossRef
  44. Prescott S.M., Fitzpatrick F.A. Cyclooxygenase-2 and carcinogenesis. Biochimica et Biophysica Acta, 2000, 1470(2): M69-M78 CrossRef
  45. Thuresson E.D., Lakkides K.M., Rieke C.J., Sun Y., Wingerd B.A., Micielli R., Mulichak A.M., Malkowski M.G., Garavito R.M., Smith W.L. Prostaglandin endoperoxide H synthase-1: the functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid. Journal of Biological Chemistry, 2001, 276(13): 10347-10357 CrossRef
  46. Stearns S.C. The evolution of life histories. NY, Oxford University Press, 1992.
  47. Chao C.H., Lee Y.P. Relationship between reproductive performance and immunity in Taiwan country chickens. Poultry Science, 2001, 80(5): 535-540 CrossRef
  48. Langille M.G., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J.A., Clemente J.C., Burkepile D.E., Vega Thurber R.L., Knight R., Beiko R.G., Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9): 814-821 CrossRef
  49. Dibner J.J., Richards J.D. Antibiotic growth promoters in agriculture history and mode of action. Poultry Science, 2005, 84(4): 634-643 CrossRef
  50. Xiao Y., Xiang Y., Zhou W., Chen J., Li K., Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 2017, 96(5): 1387-1393 CrossRef
  51. Andert J., Geissinger O., Brune A. Peptidic soil components are a major dietary resource for the humivorous larvae of Pachnoda spp. (Coleoptera: Scarabaeidae). Journal of Insect Physiology, 2008, 54(1): 105-113 CrossRef
  52. Lemke T., Stingl U., Egert M., Friedrich M.W., Brune A. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Applied and Environmental Microbiology, 2003, 69(11): 6650-6658 CrossRef
  53. Macfarlane S., Macfarlane G.T. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 2003, 62(1): 67-72 CrossRef
  54. Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology, 2020, 11: 25 CrossRef
  55. Ubeda C., Bucci V., Caballero S., Djukovic A., Toussaint N.C., Equinda M., Lipuma L., Ling L., Gobourne A., No D., Taur Y., Jenq R.R., van den Brink M.R., Xavier J.B., Pamer E.G. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infection and Immunity, 2013, 81(3): 965-973 CrossRef
  56. Lee K.C., Kil D.Y., Sul W.J. Cecal microbiome divergence of broiler chickens by sex and body weight. Journal of Microbiology, 2017, 55(12): 939-945 CrossRef
  57. Yurkovetskiy L., Burrows M., Khan A.A., Graham L., Volchkov P., Becker L., Antonopoulos D., Umesaki Y., Chervonsky A.V. Gender bias in autoimmunity is influenced by microbiota. Immunity, 2013, 39(2): 400-412 CrossRef
  58. Halle I., Henning M., Koehler P. Influence of vitamin B 12 and cobalt on growth of broiler chickens and Pekin ducks. Landbauforschung Volkenrode, 2011, 61(4): 299-306.
  59. Schoenhofen I.C., McNally D.J., Brisson J.-R., Logan S.M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology, 2006, 16(9): 8C-14C CrossRef
  60. Godon J.J., Moriniere J., Moletta M., Gaillac M., Bru V., Delgenes J.P. Rarity associated with specific ecological niches in the bacterial world: the 'Synergistes' example. Environmental Microbiology, 2005. 7(2):213-224 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)