PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.2.205eng

UDC: 636.52/.58:577.2

Acknowledgements:
The article was prepared according to the state task of the Ministry of Science and Higher Education of the Russian Federation on the topic “Development of  breeding and genetic methods to increase the yield of poultry pedigree stocks and commercial products” (State. reg. No. 121030100022-8)

 

ASSOCIATION OF SINGLE NUCLEOTIDE POLYMORPHISMS IN CANDIDATE GENES WITH ECONOMICALLY USEFUL TRAITS IN CHICKENS (Gallus gallus domesticus L.) (review)

L.G. Korshunova, R.V. Karapetyan, A.S. Komarchev, E.I. Kulikov

Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail lg@vnitip.ru (✉ corresponding author), ruben@vnitip.ru,
kulikovegor33@yandex.ru, kas1380@bk.ru

ORCID:
Korshunova L.G. orcid.org/0000-0002-4393-7499
Komarchev A.S. orcid.org/0000-0003-0919-3905
Karapetyan R.V. orcid.org/0000-0001-6610-7749
Kulikov E.I. orcid.org/0000-0001-5553-4454

Final revision received November 29, 2022
Accepted December 20, 2022

IEconomically useful traits of chickens associated with productivity are inherited polygenically. With the discovery of numerous DNA regions characterized by single nucleotide polymorphism (SNP) and the development of modern genomic technologies, a detailed assessment of the results of breeding in poultry farming has become possible to successfully predict the effect of breeding (L. Wang et al., 2011; C.M. Seabury et al., 2017). This review summarizes data on genes and SNP markers used in domestic chicken breeding and describes new polymorphic allelic variants in genes that are associated with integrated productivity indicators in chickens from the world gene pool. In Russia, domestic meat, egg and dual-purpose chicken breeds are currently subjected to thorough genotyping. Polymorphic variants of key genes LCORL (ligand dependent nuclear receptor core-pressor-like) and NCAPG (non-SMC condensin I complex, subunit G) that affect egg-laying performance has been found. Differences in SNP between egg and meat and egg and decorative chickens were revealed (T.A. Larkina et al., 2021). For the NCAPG gene, a significant association of rs14991030 alleles with shell weight, percentage of shell weight to egg weight, and shell thickness was identified (O.Yu. Barkova et al., 2016). In Russian White chickens, single nucleotide polymorphisms of the dysferlin gene (DYSF) were identified and their association with economically valuable traits was studied (O.Yu. Barkova et al., 2021). For safe breeding and selection of chicken populations and breeds, it important to prevent the spreading of genetic diseases and to ensure the maintenance of heterozygosity of the domestic gene pool. In the Smena 8 broiler meat cross line B5, typing SNPs in the DMA, RACK1, and CD1B genes responsible for a higher IgY titer revealed the fixation of an allele of a lower IgY titer at the Gga_rs15788237 locus and the predominance of an unfavorable allele at the Gga_rs15788101 locus and a favorable allele at the Gga17_rs160 locus. Changes in the Gga_rs16057130 and Gga_rs15788101 loci in the B5 broiler line bred at Smena State Breeding Center (Moscow Province) are most likely associated with selection for productivity traits (А.М. Borodin et al., 2020). Poultry genome studies are currently focused on analyzing large datasets across several generations to find associations (GWAS, genome-wide association studies) between SNPs and economically important traits such as growth rate, egg quantity and quality, meat and fat deposition. (A. Wolc, 2014; S.K. Zhu et al., 2014; J.H. Ouyang et al., 2008). Genome-wide genotyping using a high-density SNP array revealed candidate genes GRB14 and GALNT1 whose single nucleotide polymorphisms had statistically significant associations with egg production and egg quality parameters, including egg weight, eggshell weight, yolk weight, eggshell thickness and strength, albumen height and Haugh value for hens aged 40-60 weeks (W. Liu et al., 2011). GWAS analysis identified candidate genes ZAR1, STARD13, ACER1b, ACSBG2, and DHRS12 which were associated with the weight of yolk, follicles, and ovaries of hens from the beginning of oviposition to 72 weeks of age. As estimated by SNP analysis, the heritability was moderate for yolk weight (h2 of 0.25-0.38) and relatively low for follicle weight (h2 = 0.16) and ovary weight (h2 = 0.20) (C. Sun et al., 2015). Two genes, MSX2 and DRD1 are associated with embryonic and ovarian development and contain significant SNPs associated with egg quality, i,e,, height of albumen and Haugh value. Three genes, the RHOA, SDF4, and TNFRSF4 have been identified as candidate genes for eggshell coloration (Z. Liu et al., 2018). It has been reported (S.A. Azmal et al., 2019) that in the Chinese chicken breed Jing Hong, SNPs in the RAPGEF6 gene are associated with the egg laying rate during late oviposition. Several studies support the notion of dopamine involvement in the regulation of egg production in birds. Four SNPs (G+123A, T+198C, G+1065A, C+1107T) in dopamine receptor gene (DRD1) were found which significantly affect the age of the first oviposition (it characterizes the rate of puberty of hens), the weight of the first egg and the yield of standard eggs (H. Xu et al., 2010). The VIP (receptor for vasoactive intestinal peptide-1) gene polymorphisms are associated with brooding instinct and egg production rate (M. Zhou et al., 2010). X. Li et al., (2019) found five polymorphisms in the promoter region of the FSHR (follicle-stimulating hormone receptor) gene and determined their association with the total egg production for 43 weeks of life and with the age of laying the first egg. H. Zhou et al. (2005) found significant associations of single nucleotide polymorphism in the IGF1(insulin-like growth factor 1) gene promoter with growth rate, body composition, skeletal condition and physiological parameters of chickens. Meat quality is due to a complex of quantitative traits and is controlled by multiple genes such as FABP (fatty acid binding protein) (K.H. Cho et al., 2011), CAPN1 (micromolar calcium activated neutral protease gene) (J.T. Shu et al., 2015), PRKAG3 (protein kinase AMP-activated non-catalytic subunit gamma 3) (Y. Yang et al., 2016). The identified statistically significant associations of single nucleotide polymorphisms with economically important traits can be used in poultry breeding and selection programs.

Keywords: gene, SNP, single nucleotide polymorphism, allele, chickens, meat productivity, egg productivity, full genome associations, GWAS.

 

REFERENCES

  1. Schmid M., Smith J., Burt D.W., Aken B.L., Antin P.B., Archibald A.L., Ashwell C., Blackshear P.J., Boschiero C., Brown C.T., Burgess S.C., Cheng H.H., Chow W., Coble D.J., Cooksey A., Crooijmans R.P., Damas J., Davis R.V., de Koning D.J., Delany M.E., Derrien T., Desta T.T., Dunn I.C., Dunn M., Ellegren H., Eory L., Erb I., Farre M., Fasold M., Fleming D., Flicek P., Fowler K.E., Fresard L., Froman D.P., Garceau V., Gardner P.P., Gheyas A.A., Griffin D.K., Groenen M.A., Haaf T., Hanotte O., Hart A., Hasler J., Hedges S.B., Hertel J., Howe K., Hubbard A., Hume D.A., Kaiser P., Kedra D., Kemp S.J., Klopp C., Kniel K.E., Kuo R., Lagarrigue S., Lamont S.J., Larkin D.M., Lawal R.A., Markland S.M., McCarthy F., McCormack H.A., McPherson M.C., Motegi A., Muljo S.A., Munsterberg A., Nag R., Nanda I., Neuberger M., Nitsche A., Notredame C., Noyes H., O'Connor R., O'Hare E.A., Oler A.J., Ommeh S.C., Pais H., Persia M., Pitel F., Preeyanon L., Prieto Barja P., Pritchett E.M., Rhoads D.D., Robinson C.M., Romanov M.N., Rothschild M., Roux P.F., Schmidt C.J., Schneider A.S., Schwartz M.G., Searle S.M., Skinner M.A., Smith C.A., Stadler P.F., Steeves T.E., Steinlein C., Sun L., Takata M., Ulitsky I., Wang Q., Wang Y., Warren W.C., Wood J.M., Wragg D., Zhou H. Third report on chicken genes and chromosomes 2015. Cytogenet. Genome Res., 2015, 145(2): 78-179 CrossRef
  2. Zinov’eva N.A., Bagirov V.A., Gladyr’ E.A., Osadchiya O.Yu. Recent achievements and challenges in farm animal biotechnology (10th Anniversary Scientific Conference with international participation — analytical review. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(2): 264-268 CrossRef
  3. Aslam M.L., Bastiaansen J.W., Elferink M.G., Megens H.J., Crooijmans R.P., Blomberg le A., Fleischer R.C., Van Tassell C.P., Sonstegard T.S., Schroeder S.G., Groenen M.A., Long J.A. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genomics, 2012, 13: 391 CrossRef
  4. Veller D.I. Genomnaya selektsiya zhivotnykh /Pod redaktsiey K.V. Plemyashova [Genomic breeding of animals. K.V. Plemyashov (ed.)]. St. Petersburg, 2018 (in Russ.).
  5. Wang L., Jia P., Wolfinger R.D., Chen X., Zhao Z. Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics, 2011, 98(1): 1-8 CrossRef
  6. Seabury C.M., Oldeschulte D.L., Saatchi M., Beever J.E., Decker J.E., Halley Y.A., Bhattarai E.K., Molaei M., Freetly H.C., Hansen S.L., Yampara-Iquise H., Johnson K.A., Kerley M.S., Kim J., Loy D.D., Marques E., Neibergs H.L., Schnabel R.D., Shike D.W., Spangler M.L., Weaber R.L., Garrick D.J., Taylor J.F. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics, 2017, 18(1): 386 CrossRef
  7. Alekseev Ya.I., Malyuchenko O.P., Konovalova N.V., Efimov D.N., Emanuylova Zh.V., Ogneva O.A., Fisinin V.I. Izvestiya TSKhA, 2018, 2: 136-144 CrossRef (in Russ.).
  8. Efimov D.N., Emanuylova Zh.V., Zhuravleva E.V., Egorova A.V., Fisinin V.I. Selection of preparental lines of Plymouth Rock chicken using marker genes K and k. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(6): 1162-1168 CrossRef
  9. Kulikov E.I., Karapetyan R.V., Korshunova L.G., Komarchev A.S., Martynova V.N., Kravchenko A.K. Ptitsevodstvo, 2022, (11): 4-8 CrossRef (in Russ.). 
  10. Larkina T.A., Romanov M.N., Barkova O.Yu., Peglivanyan G.K., Mitrofanova O.V., Dement’eva N.V., Stanishevskaya O.I., Vakhrameev A.B., Makarova A.V., Shcherbakov Yu.S., Pozovnikova M.V., Griffin D.K. V kn.: Materialy 3-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Molekulyarno-geneticheskie tekhnologii analiza еkspressii genov produktivnosti i ustoychivosti k zabolevaniyam zhivotnykh» /Pod redaktsiey S.V. Pozyabina, I.I. Kochisha, M.N. Romanova [Proc. Int. Conf. «Molecular genetic technologies for analysis of gene expression of productivity and resistance to animal diseases». S.V. Pozyabin, I.I. Kochish, M.N. Romanov (eds.)]. Moscow, 2021: 133-146 (in Russ.).
  11. Larkina T.A., Sazanova A.L., Fomichev K.A., Barkova O.Yu., Sazanov A.A., Malevski T., Yashchak K. Genetika, 2011, 47(8): 1140-1144 (in Russ.).
  12. Barkova O.Yu., Smaragdov M.G. Genetika, 2013, 49(7): 856-861 CrossRef (in Russ.).
  13. Barkova O.Yu., Smaragdov M.G. Vavilovskiy zhurnal genetiki i selektsii, 2016, 20(1): 34-38 CrossRef (in Russ.).
  14. Dement’eva N.V., Romanov M.N., Kudinov A.A., Mitrofanova O.V., Stanishevskaya O.I., Terletskiy V.P., Fedorova E.S., Nikitkina E.V., Plemyashov K.V. Studying the structure of a gene pool population of the Russian White chicken breed by genome-wide SNP scan. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(6): 1166-1174 CrossRef
  15. Dement’eva N.V., Mitrofanova O.V., Tyshchenko V.I., Terletskiy V.P., Yakovlev A.F. Vavilovskiy zhurnal genetiki i selektsii, 2016, 20(1): 39-43 CrossRef (in Russ.).
  16. Barkova O.Yu., Smaragdov M.G. Teoreticheskie i prikladnye aspekty sovremennoy nauki, 2015, 7-1: 82-87 (in Russ.).
  17. Barkova O.Yu. Ptitsevodstvo, 2019, 7-8: 14-18 CrossRef (in Russ.).
  18. Barkova O.Yu., Krutikova A.A., Dement’eva N.V. A polymorphism analysis of dysferlin gene locus in chicken gene pool. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(4): 641-650 CrossRef
  19. Kramer J., Visscher A.H., Wagenaar J.A., Cornelissen J.B., Jeurissen S.H. Comparison of natural resistance in seven genetic groups of meat-type chicken. British Poultry Science, 2003, 44(4): 577-585 CrossRef
  20. Cheema M.A., Qureshi M.A., Havenstein G.B. A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets. Poultry Science, 2003, 82(10): 1519-1529 CrossRef
  21. van der Most P.J., de Jong B., Parmentier H.K., Verhulst S. Trade-off between growth and immune function: a meta-analysis of selection experiments. Functional Ecology, 2011, 25(1): 74-80 CrossRef
  22. Borodin A.M., Alekseev Ya.I., Gerasimov K.E., Konovalova N.V., Terent’eva E.V., Efimov D.N., Emanuylova Zh.V., Tuchemskiy L.I., Komarov A.A., Fisinin V.I. Vavilovskiy zhurnal genetiki i selektsii, 2020, 24(7): 755-760 CrossRef (in Russ.).
  23. Qanbari S., Rubin C.J., Maqbool K., Weigend S., Weigend A., Geibel J., Kerje S., Wurmser C., Peterson A.T., Brisbin I.L. Jr., Preisinger R., Fries R., Simianer H., Andersson L. Genetics of adaptation in modern chicken. PLoS Genetics, 2019, 15(4): e1007989 CrossRef
  24. Wolc A. Understanding genomic selection in poultry breeding. World’s Poultry Science Journal, 2014, 70(2): 309-314 CrossRef
  25. Zhu S.K., Tian Y.D., Zhang S., Chen Q.X., Wang Q.Y., Han R.L., Kang X.T. Adjacent SNPs in the transcriptional regulatory region of the FADS2 gene associated with fatty acid and growth traits in chickens. Genetics and Molecular Research, 2014, 13(2): 3329-3336 CrossRef
  26. Ouyang J.H., Xie L., Nie Q., Luo C., Liang Y., Zeng H., Zhang X. Single nucleotide polymorphism (SNP) at the GHR gene and its associations with chicken growth and fat deposition traits. British Poultry Science, 2008, 49(2): 87-95 CrossRef
  27. Liu R., Sun Y., Zhao G., Wang F., Wu D., Zheng M., Chen J., Zhang L., Hu Y., Wen J. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS ONE, 2013, 8(4): e61172 CrossRef
  28. Pampouille E., Berri C., Boitard S., Hennequet-Antier C., Beauclercq S.A., Godet E., Praud C., Jego Y., Le Bihan-Duval E. Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens. BMC Genomics, 2018, 19(1): 202 CrossRef
  29. Shah T.M., Patel N.V., Patel A.B., Upadhyay M.R., Mohapatra A., Singh K.M., Deshpande S.D., Joshi C.G. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio. Molecular Genetics and Genomics: MGG, 2016, 291(4): 1715-1725 CrossRef
  30. Jin S., Lee S.H., Lee D.H., Manjula P., Lee S.H., Lee J.H. Genetic association of DEGS1, ELOVL6, FABP3, FABP4, FASN and SCD genes with fatty acid composition in breast and thigh muscles of Korean native chicken. Anim. Genet., 2020, 51(2): 344-345 CrossRef
  31. Groenen M.A., Megens H.J., Zare Y., Warren W.C., Hillier L.W., Crooijmans R.P., Vereijken A., Okimoto R., Muir W.M., Cheng H.H. The development and characterization of a 60K SNP chip for chicken. BMC Genomics, 2011, 12(1): 274 CrossRef
  32. Kranis A., Gheyas A.A., Boschiero C., Turner F., Yu L., Smith S., Talbot R., Pirani A., Brew F., Kaiser P., Hocking P.M., Fife M., Salmon N., Fulton J., Strom T.M., Haberer G., Weigend S., Preisinger R., Gholami M., Qanbari S., Simianer H., Watson K.A., Woolliams J.A., Burt D.W. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics, 2013, 14: 59 CrossRef
  33. Liu Z., Sun C., Yan Y., Li G., Li X.C., Wu G., Yang N. Design and evaluation of a custom 50K Infinium SNP array for egg-type chickens. Poultry Science, 2021, 100(5): 101044 CrossRef
  34. Liu Z., Sun C., Yan Y., Li G., Wu G., Liu A., Yang N. Genome-wide association analysis of age-dependent egg weights in chickens. Front. Genet., 2018, 9: 128 CrossRef
  35. Liu W., Li D., Liu J., Chen S., Qu L., Zheng J., Xu G., Yang N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE, 2011, 6(12): e28600 CrossRef
  36. Sun C., Lu J., Yi G., Yuan J., Duan Z., Qu L., Xu G., Wang K., Yang N. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. PLoS ONE, 2015, 10(9): e0137145 CrossRef
  37. Bain M.M., Nys Y., Dunn I.C. Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? British Poultry Science, 2016, 57(3): 330-338 CrossRef
  38. Schreiweis M.A., Hester P.Y., Settar P., Moody D.E. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet., 2006, 37(2): 106-112 CrossRef
  39. Tuiskula-Haavisto M., Honkatukia M., Preisinger R., Schmutz M., de Koning D.J., Wei W.H., Vilkki J. Quantitative trait loci affecting eggshell traits in an F(2) population. Anim. Genet., 2011, 42(3): 293-299 CrossRef
  40. Tuiskula-Haavisto M., Honkatukia M., Vilkki J., de Koning D.J., Schulman N.F., Maki-Tanila A. Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poultry Science, 2002, 81(7): 919-927 CrossRef
  41. Liu Z., Sun C., Yan Y., Li G., Shi F., Wu G., Liu A., Yang N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Scientific Reports, 2018, 8(1): 10832 CrossRef
  42. Qin N., Liu Q., Zhang Y.Y., Fan X.C., Xu X.X., Lv Z.C., Wei M.L., Jing Y., Mu F., Xu R.F. Association of novel polymorphisms of forkhead box L2 and growth differentiation factor-9 genes with egg production traits in local Chinese Dagu hens. Poultry Science, 2015, 94(1): 88-95 CrossRef
  43. Jing Y., Shan X., Mu F., Qin N., Zhu H., Liu D., Yuan S., Xu R. Associations of the novel polymorphisms of periostin and platelet-derived growth factor receptor-like genes with egg production traits in local Chinese Dagu hens. Anim. Biotechnol., 2016, 27(3): 208-216 CrossRef
  44. Azmal S.A., Bhuiyan A.A., Omar A.I., Ma S., Sun C., Han Z., Zhang M., Zhao S., Li S. Novel polymorphisms in RAPGEF6 gene associated with egg-laying rate in Chinese Jing Hong chicken using genome-wide SNP scan. Genes (Basel), 2019, 10(5): 384 CrossRef
  45. Reddy I.J., David C.G., Raju S.S. Effect of suppression of plasma prolactin on luteinizing hormone concentration, intersequence pause days and egg production in domestic hen. Domestic Animal Endocrinology, 2007, 33(2): 167-175 CrossRef
  46. Ben-Jonathan N., Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocrine Reviews, 2001, 22(6): 724-763 CrossRef
  47. Reymond M.J., Porter J.C. Involvement of hypothalamic dopamine in the regulation of prolactin secretion. Horm. Res., 1985, 22(3): 142-152 CrossRef
  48. Xu M., Proudman J.A., Pitts G.R., Wong E.A., Foster D.N., el Halawani M.E. Vasoactive intestinal peptide stimulates prolactin mRNA expression in turkey pituitary cells: effects of dopaminergic drugs. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, 1996, 212(1): 52-62 CrossRef
  49. Youngren O.M., Pitts G.R., Phillips R.E., el Halawani M.E. The stimulatory and inhibitory effects of dopamine on prolactin secretion in the turkey. General and Comparative Endocrinology, 1995, 98(1): 111-117 CrossRef
  50. Youngren O.M., Chaiseha Y., El Halawani M.E. Regulation of prolactin secretion by dopamine and vasoactive intestinal peptide at the level of the pituitary in the turkey. Neuroendocrinology, 1998, 68(5): 319-325 CrossRef
  51. Xu H., Shen X., Zhou M., Fang M., Zeng H., Nie Q., Zhang X. The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet., 2010, 11: 17 CrossRef
  52. Zhou M., Du Y., Nie Q., Liang Y., Luo C., Zeng H., Zhang X. Associations between polymorphisms in the chicken VIP gene, egg production and broody traits. British Poultry Science, 2010, 51(2): 195-203 CrossRef
  53. Ruwanpura S.M., McLachlan R.I., Stanton P.G., Meachem S.J. Follicle-stimulating hormone affects spermatogonial survival by regulating the intrinsic apoptotic pathway in adult rats. Biology of Reproduction, 2008, 78(4): 705-713 CrossRef
  54. Plant T.M. Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. Journal of Neuroendocrinology, 2008, 20(6): 719-726 CrossRef
  55. George J.W., Dille E.A., Heckert L.L. Current concepts of follicle-stimulating hormone receptor gene regulation. Biology of Reproduction, 2011, 84(1): 7-17 CrossRef
  56. Wicker T., Robertson J.S., Schulze S.R., Feltus F.A., Magrini V., Morrison J.A., Mardis E.R., Wilson R.K., Peterson D.G., Paterson A.H., Ivarie R. The repetitive landscape of the chicken genome. Genome Research, 2005, 15(1): 126-136 CrossRef
  57. Li X., Lu Y., Liu X., Xie X., Wang K., Yu D. Identification of chicken FSHR gene promoter and the correlations between polymorphisms and egg production in Chinese native hens. Reprod. Dom. Anim., 2019, 54(4): 702-711 CrossRef
  58. Wang Z.P., Liu R.F., Wang A.R., Li J.Y., Deng X.M. Expression and activity analysis reveal that heme oxygenase (decycling) 1 is associated with blue egg formation. Poultry Science, 2011, 90(4): 836-841 CrossRef
  59. Wang X.L., Zheng J.X., Ning Z.H., Qu L.J., Xu G.Y., Yang N. Laying performance and egg quality of blue-shelled layers as affected by different housing systems. Poultry Science, 2009, 88(7): 1485-1492 CrossRef
  60. Liu T., Qu H., Luo C., Shu D., Wang J., Lund M.S., Su G. Accuracy of genomic prediction for growth and carcass traits in Chinese triple-yellow chickens. BMC Genet., 2014, 15: 110 CrossRef
  61. Xu H.P., Zeng H., Zhang D.X., Jia X.L., Luo C.L., Fang M.X., Nie Q.H., Zhang X.Q. Polymorphisms associated with egg number at 300 days of age in chickens. Genetics and Molecular Research, 2011, 10(4): 2279-2289 CrossRef
  62. Williams S.M., Price S.E., Siegel P.B. Heterosis of growth and reproductive traits in fowl. Poultry Science, 2002, 81(8): 1109-1112 CrossRef
  63. Andersson L., Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet., 2004, 5(3): 202-212 CrossRef
  64. Soller M., Weigend S., Romanov M.N., Dekkers J.C., Lamont S.J. Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poultry Science, 2006, 85(12): 2061-2078 CrossRef
  65. Abasht B., Dekkers J.C., Lamont S.J. Review of quantitative trait loci identified in the chicken. Poultry Science, 2006, 85(12): 2079-2096 CrossRef
  66. Hu Z.L., Fritz E.R., Reecy J.M. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Research, 2007, 35(Database issue): 604-609 CrossRef
  67. Korstanje R., Paigen B. From QTL to gene: the harvest begins. Nat. Genet., 2002, 31(3): 235-236 CrossRef
  68. Borevitz J.O., Chory J. Genomics tools for QTL analysis and gene discovery. Curr. Opin. Plant Biol., 2004, 7(2): 132-136 CrossRef
  69. Kadarmideen H.N., von Rohr P., Janss L.L. From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm. Genome, 2006, 17(6): 548-564 CrossRef
  70. Beyer A., Bandyopadhyay S., Ideker T. Integrating physical and genetic maps: from genomes to interaction networks. Nat. Rev. Genet., 2007, 8(9): 699-710 CrossRef
  71. Ou J.T., Tang S.Q., Sun D.X., Zhang Y. Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poultry Science, 2009, 88(4): 722-727 CrossRef
  72. Deeb N., Lamont S.J. Genetic architecture of growth and body composition in unique chicken populations. Journal of Heredity, 2002, 93(2): 107-118 CrossRef
  73. McMurtry J.P., Francis G.L., Upton Z. Insulin-like growth factors in poultry. Domestic Animal Endocrinology, 1997, 14(4): 199-229 CrossRef
  74. Duclos M.J., Beccavin C., Simon J. Genetic models for the study of insulin-like growth factors (IGF) and muscle development in birds compared to mammals. Domestic Animal Endocrinology, 1999, 17(2-3): 231-243 CrossRef
  75. Florini J.R., Ewton D.Z., Coolican S.A. Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Reviews, 1996, 17(5): 481-517 CrossRef
  76. Goddard C., Wilkie R.S., Dunn I.C. The relationship between insulin-like growth factor-1, growth hormone, thyroid hormones and insulin in chickens selected for growth. Domestic Animal Endocrinology, 1988, 5(2): 165-176 CrossRef
  77. Scanes C.G., Dunnington E.A., Buonomo F.C., Donoghue D.J., Siegel P.B. Plasma concentrations of insulin like growth factors (IGF-)I and IGF-II in dwarf and normal chickens of high and low weight selected lines. Growth, Development, and Aging: GDA, 1989, 53(4): 151-157.
  78. Ballard F.J., Johnson R.J., Owens P.C., Francis G.L., Upton F.M., McMurtry J.P., Wallace J.C. Chicken insulin-like growth factor-I: amino acid sequence, radioimmunoassay, and plasma levels between strains and during growth. General and Comparative Endocrinology, 1990, 79(3): 459-468 CrossRef
  79. Tesseraud S., Pym R.A., Le Bihan-Duval E., Duclos M.J. Response of broilers selected on carcass quality to dietary protein supply: live performance, muscle development, and circulating insulin-like growth factors (IGF-I and -II). Poultry Science, 2003, 82(6): 1011-1016 CrossRef
  80. Amills M., Jimenez N., Villalba D., Tor M., Molina E., Cubilo D., Marcos C., Francesch A., Sanchez A., Estany J. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poultry Science, 2003, 82(10): 1485-1493 CrossRef
  81. Sewalem A., Morrice D.M., Law A., Windsor D., Haley C.S., Ikeobi C.O., Burt D.W., Hocking P.M. Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poultry Science, 2002, 81(12): 1775-1781 CrossRef
  82. Ikeobi C.O., Woolliams J.A., Morrice D.R., Law A., Windsor D., Burt D.W., Hocking P.M. Quantitative trait loci affecting fatness in the chicken. Anim. Genet., 2002, 33(6): 428-435 CrossRef
  83. Zhou H., Mitchell A.D., McMurtry J.P., Ashwell C.M., Lamont S.J. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poultry Science, 2005, 84(2): 212-219 CrossRef
  84. Lee J.H. Special issue: poultry genetics, breeding and biotechnology. Genes (Basel), 2021, 12(11): 1744 CrossRef
  85. Jansen S., Baulain U., Habig C., Ramzan F., Schauer J., Schmitt A.O., Scholz A.M., Sharifi A.R., Weigend A., Weigend S. Identification and functional annotation of genes related to bone stability in laying hens using random forests. Genes (Basel), 2021, 12(5): 702 CrossRef
  86. Smith D.P., Northcutt J.K., Steinberg E.L. Meat quality and sensory attributes of a conventional and a Label Rouge-type broiler strain obtained at retail. Poultry Science, 2012, 91(6): 1489-1495 CrossRef
  87. Qiao M., Fletcher D.L., Smith D.P., Northcutt J.K. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poultry Science, 2001, 80(5): 676-680 CrossRef
  88. John K.A., Maalouf J., Barsness C.B., Yuan K., Cogswell M.E., Gunn J.P. Do lower calorie or lower fat foods have more sodium than their regular counterparts? Nutrients, 2016, 8(8): 511 CrossRef
  89. Allen C.D., Fletcher D.L., Northcutt J.K., Russell S.M. The relationship of broiler breast color to meat quality and shelf-life. Poultry Science, 1998, 77(2): 361-366 CrossRef
  90. Magalhaes A.F.B., Schenkel F.S., Garcia D.A., Gordo D.G.M., Tonussi R.L., Espigolan R., Silva R.M.O., Braz C.U., Fernandes Junior G.A., Baldi F., Carvalheiro R., Boligon A.A., de Oliveira H.N., Chardulo L.A.L., de Albuquerque L.G. Genomic selection for meat quality traits in Nelore cattle. Meat Science, 2019, 148: 32-37 CrossRef
  91. Mir N.A., Rafiq A., Kumar F., Singh V., Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. J. Food Sci. Technol., 2017, 54(10): 2997-3009 CrossRef
  92. Cho K.H., Kim M.J., Jeon G.J., Chung H.Y. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Molecular Biology Reports, 2011, 38(3): 2161-2166 CrossRef
  93. Shu J.T., Zhang M., Shan Y.J., Xu W.J., Chen K.W., Li H.F. Analysis of the genetic effects of CAPN1 gene polymorphisms on chicken meat tenderness. Genetics and Molecular Research, 2015, 14(1): 1393-1403 CrossRef
  94. Yang Y., Xiong D., Yao L., Zhao C. An SNP in exon 11 of chicken 5'-AMP-activated protein kinase gamma 3 subunit gene was associated with meat water holding capacity. Anim. Biotechnol., 2016, 27(1): 13-16 CrossRef
  95. Zappaterra M., Sami D., Davoli R. Association between the splice mutation g.8283C>A of the PHKG1 gene and meat quality traits in Large White pigs. Meat Sciebce, 2019, 148: 38-40 CrossRef
  96. Liu Y., Liu Y., Ma T., Long H., Niu L., Zhang X., Lei Y., Wang L., Chen Y., Wang Q., Zheng Z., Xu X. A splicing mutation in PHKG1 decreased its expression in skeletal muscle and caused PSE meat in Duroc ½ Luchuan crossbred pigs. Anim. Genet., 2019, 50(4): 395-398 CrossRef
  97. Liu Y., Liu X., Zheng Z., Ma T., Liu Y., Long H., Cheng H., Fang M., Gong J., Li X., Zhao S., Xu X. Genome-wide analysis of expression QTL (eQTL) and allele-specific expression (ASE) in pig muscle identifies candidate genes for meat quality traits. Genet. Sel. Evol,. 2020, 52(1): 59 CrossRef
  98. Xiong X., Liu X., Zhu X., Tan Y., Wang Z., Xu J., Tu X., Rao Y., Duan J., Zhao W., Zhou M. A mutation in PHKG1 causes high drip loss and low meat quality in Chinese Ningdu yellow chickens. Poultry Science, 2022, 101(1): 101556 CrossRef
  99. Cho S., Manjula P., Kim M., Cho E., Lee D., Lee S.H., Lee J.H., Seo D. Comparison of selection signatures between Korean native and commercial chickens using 600K SNP array data. Genes (Basel), 2021, 12(6): 824 CrossRef
  100. Cha J., Choo H., Srikanth K., Lee S.H., Son J.W., Park M.R., Kim N., Jang G.W., Park J.E. Genome-wide association study identifies 12 loci associated with body weight at age 8 weeks in Korean native chickens. Genes (Basel), 2021, 12(8): 1170 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)