PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.2.223eng

UDC: 636:575.174.015.3

 

DNA MARKERS AND MICROSATELLITE CODE (review)

V.I. Glazko, G.Yu. Kosovsky, T.T. Glazko, L.M. Fedorova

Afanas’ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, 6, ul. Trudovaya, pos. Rodniki, Ramenskii Region, Moscow Province, 140143 Russia, e-mail vigvalery@gmail.com, gkosovsky@mail.ru, tglazko@rambler.ru (✉ corresponding author), felami@mail.ru

ORCID:
Glazko V.I. orcid.org/0000-0003-4242-2239
Glazko T.T. orcid.org/0000-0002-0520-7022
Kosovsky G.Yu. orcid.org/0000-0003-1889-6063
Fedorova L.M. orcid.org/0000-0002-1514-3050

Final revision received January 10, 2023
Accepted February 6, 2023

The search for genetic markers that simplify the selection of animals for crosses, increasing the likelihood of offspring obtaining with the desired manifestation of economically valuable traits is a central problem in modern animal husbandry. Here, we discuss the most successful applications of various types of DNA markers of genomic element polymorphisms for solving specific breeding problems. Microsatellites are used to exclude errors of origin, single nucleotide polymorphisms (SNPs) to create maps of genomic regions in which polymorphism is associated with the variability of phenotypic characteristics (D.J. Rigden, X.M. Fernández, 2023) and to identify the localization of key genes of adaptation to natural selection factors at the natural habitat edges and in areas of animal husbandry risky (E.K. Cheruiyot et al., 2022; L. Buggiotti et al.., 2021, 2022). The loci of increased variability in the copyicity of genome regions (CNV) are used to assess their involvement in responses to natural and artificial selection factors of such polygenic systems as sensory, immune, and transporter (Y. Huang et al., 2021; P. Davoudi et al., 2022). The predominant involvement of regulatory networks including dispersed and tandem repeats, in particular microsatellite repeats, in epigenetic and phenotypic variability is discussed (R.P. Kumar et al., 2010). The structural and functional complexity of microsatellite loci, individual features of variability of specific loci and their participation in evolutionary, recombination, transcription processes are considered. Their involvement in the organization of secondary DNA structures, participation in the formation and variability of the architectonics of the interphase nucleus and regulation of gene expression profiles is noted (R.P. Kumar et al., 2010; X. Tang et al., 2022). The study of regulatory networks is of particular importance, since there is evidence that the size of the genome in animals of different taxa, as well as the distribution and composition of mobile genetic elements (sources of components of regulatory networks) differ significantly, in contrast to the similarity in the number of genes encoding proteins (V.I. Glazko et al., 2022). Accumulating evidence suggests that polylocus genotyping of individual microsatellites and dispersed repeats can contribute to solving practical problems, such as information on the specific features of the population-genetic structure, consolidation and differences between closely related groups of animals.

Keywords: DNA markers, microsatellites, short tandem repeat, STR, single nucleotide polymorphism, SNP, copy number variations, CNV, genome-wide association studies, GWAS.

 

REFERENCES

  1. Serebrovskiy A.S. Geneticheskiy analiz [Genetic analysis]. Moscow, 1970 (in Russ.).
  2. Glazko V.I. Gene and genomic levels of domestication signature (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(4): 659-672 CrossRef
  3. Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci., 2021, 22: 4309 CrossRef
  4. Li C., Tian D., Tang B., Liu X., Teng X., Zhao W., Zhang Z., Song S. Genome variation map: a worldwide collection of genome variations across multiple species. Nucleic Acids Res., 2021, 49(D1): D1186-D1191 CrossRef
  5. Wang Z.H., Zhu Q.H., Li X., Zhu J.W., Tian D.M., Zhang S.S., Kang H.L., Li C.P., Dong L.L., Zhao W.M., Li M.H. iSheep: an integrated resource for sheep genome, variant and phenotype. Front. Genet., 2021, 12: 714852 CrossRef
  6. Kirichenko A.V., Zlobin A.S., Shashkova T.I., Volkova N.A., Iolchiev B.S., Bagirov V.A., Borodin P.M., Karssen L.S., Tsepilov Y.A., Aulchenko Y.S. The GWAS-MAP|ovis platform for aggregation and analysis of genome-wide association study results in sheep. Vavilovskii Zhurnal Genetiki i Selektsii, 2022, 26(4): 378-384 CrossRef
  7. Pös O., Radvanszky J., Buglyó G., Pös Z., Rusnakova D., Nagy B., Szemes T. DNA copy number variation: main characteristics, evolutionary significance, and pathological aspects. Biomed. J., 2021, 44(5): 548-559 CrossRef
  8. Strillacci M.G., Gorla E., Cozzi M.C., Vevey M., Genova F., Scienski K., Longeri M., Bagnato A. A copy number variant scan in the autochthonous Valdostana Red Pied cattle breed and comparison with specialized dairy populations. PLoS ONE, 2018, 3(9): e0204669 CrossRef
  9. Lee Y.L., Bosse M., Mullaart E., Groenen M.A.M., Veerkamp R.F., Bouwman A.C. Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics, 2020, 21(1): 89 CrossRef
  10. Qiu Y., Ding R., Zhuang Z., Wu J., Yang M., Zhou S., Ye Y., Geng Q., Xu Z., Huang S., Cai G., Wu Z., Yang J. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics, 2021, 22(1): 332 CrossRef
  11. Davoudi P., Do D.N., Rathgeber B., Colombo S.M., Sargolzaei M., Plastow G., Wang Z., Karimi K., Hu G., Valipour S., Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics, 2022, 23(1): 649 CrossRef
  12. Yuan C., Lu Z., Guo T., Yue Y., Wang X., Wang T., Zhang Y., Hou F., Niu C., Sun X., Zhao H., Zhu S., Liu J., Yang B. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing. BMC Genomics, 2021, 22(1): 78 CrossRef
  13. Laseca N., Molina A., Valera M., Antonini A., Demyda-Peyrás S. Copy number variation (CNV): a new genomic insight in horses. Animals (Basel), 2022, 12(11): 1435 CrossRef
  14. Bhanuprakash V., Chhotaray S., Pruthviraj D.R., Rawat C., Karthikeyan A., Panigrahi M. Copy number variation in livestock: a mini review. Vet. World, 2018, 11(4): 535-541 CrossRef
  15. Seroussi E., Glick G., Shirak A., Yakobson E., Weller J.I., Ezra E., Zeron Y. Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC Genomics, 2010, 11: 673 CrossRef
  16. Wang Z., Guo J., Guo Y., Yang Y., Teng T., Yu Q., Wang T., Zhou M., Zhu Q., Wang W., Zhang Q., Yang H. Genome-wide detection of CNVs and association with body weight in sheep based on 600K SNP Arrays. Front. Genet., 2020, 11: 558 CrossRef
  17. Taghizadeh S., Gholizadeh M., Rahimi-Mianji G., Moradi M.H., Costilla R., Moore S., Di Gerlando R. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds. Sci. Rep., 2022, 12(1): 8834 CrossRef
  18. Kalds P., Zhou S., Gao Y., Cai B., Huang S., Chen Y., Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet. Sel. Evol., 2022, 54(1): 61 CrossRef
  19. Feng Y., Zhang Y., Ying C., Wang D., Du C. Nanopore-based fourth-generation DNA sequencing technology. Genom. Proteom. Bioinform., 2015, 13: 4-16 CrossRef
  20. Suminda G.G.D., Ghosh M., Son Y.O. The innovative informatics approaches of high-throughput technologies in livestock: spearheading the sustainability and resiliency of agrigenomics research. Life (Basel), 2022, 12(11):1893 CrossRef
  21. Nolte W., Alkhoder H., Wobbe M., Stock K.F., Kalm E., Vosgerau S., Krattenmacher N., Thaller G., Tetens J., Kühn C. Replacement of microsatellite markers by imputed medium-density SNP arrays for parentage control in German warmblood horses. J. Appl .Genet., 2022, 63(4): 783-792 CrossRef
  22. Marina H., Suarez-Vega A., Pelayo R., Gutiérrez-Gil B., Reverter A., Esteban-Blanco C., Arranz J.J. Accuracy of imputation of microsatellite markers from a 50K SNP chip in Spanish Assaf sheep. Animals (Basel),2021, 11(1): 86 CrossRef
  23. McClure M.C., Sonstegard T.S., Wiggans G.R., Van Eenennaam A.L., Weber K.L., Penedo C.T., Berry D.P., Flynn J., Garcia J.F., Carmo A.S., Regitano L.C., Albuquerque M., Silva M.V., Machado M.A., Coffey M., Moore K., Boscher M.Y., Genestout L., Mazza R., Taylor J.F., Schnabel R.D., Simpson B., Marques E., McEwan J.C., Cromie A., Coutinho L.L., Kuehn L.A., Keele J.W., Piper E.K., Cook J., Williams R., Bovine HapMap Consortium, Van Tassell C.P. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds. Front Genet., 2013, 4: 176 CrossRef
  24. McClure M., Sonstegard T., Wiggans G., Van Tassell C. Imputation of microsatellite alleles from dense SNP genotypes for parental verification. Front. Genet., 2012, 3: 140 CrossRef
  25. Xu L., Haasl R.J., Sun J., Zhou Y., Bickhart D.M., Li J., Song J., Sonstegard T.S., Van Tassell C.P., Lewin H.A., Liu G.E. Systematic profiling of short tandem repeats in the cattle genome. Genome Biol. Evol., 2017, 9(1): 20-31 CrossRef
  26. Jiang Y., Song H., Gao H., Zhang Q., Ding X. Exploring the optimal strategy of imputation from SNP array to whole-genome sequencing data in farm animals. Front. Genet., 2022, 13: 963654 CrossRef
  27. Crysnanto D., Leonard A.S., Fang Z.H., Pausch H. Novel functional sequences uncovered through a bovine multiassembly graph. Proc. Natl. Acad. Sci. USA, 2021, 118(20): e2101056118 CrossRef
  28. Chen S., Liu S., Shi S., Jiang Y., Cao M., Tang Y., Li W., Liu J., Fang L., Yu Y., Zhang S. Comparative epigenomics reveals the impact of ruminant-specific regulatory elements on complex traits. BMC Biol., 2022, 20(1): 273 CrossRef
  29. Li J., Xiang Y., Zhang L., Qi X., Zheng Z., Zhou P., Tang Z., Jin Y., Zhao Q., Fu Y., Zhao Y., Li X., Fu L., Zhao S. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. BMC Biol., 2022, 20(1): 136 CrossRef
  30. Hayes B.J., Bowman P.J., Chamberlain A.J., Savin K., van Tassell C.P., Sonstegard T.S., Goddard M.E. A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PLoS ONE, 2009, 4(8): e6676 CrossRef
  31. Cheruiyot E.K., Haile-Mariam M., Cocks B.G., Pryce J.E. Improving genomic selection for heat tolerance in dairy cattle: current opportunities and future directions. Front. Genet., 2022, 13: 894067 CrossRef
  32. Buggiotti L., Yurchenko A.A., Yudin N.S., Vander Jagt C.J., Vorobieva N.V., Kusliy M.A., Vasiliev S.K., Rodionov A.N., Boronetskaya O.I., Zinovieva N.A., Graphodatsky A.S., Daetwyler H.D., Larkin D.M. Demographic history, adaptation, and NRAP convergent evolution at amino acid residue 100 in the world northernmost cattle from Siberia. Mol. Biol. Evol., 2021, 38(8): 3093-3110 CrossRef
  33. Buggiotti L., Yudin N.S., Larkin D.M. Copy number variants in two northernmost cattle breeds are related to their adaptive phenotypes. Genes, 2022, 13: 1595 CrossRef
  34. Lemay D.G., Lynn D.J., Martin W.F., Neville M.C., Casey T.M., Rincon G., Kriventseva E.V., Barris W.C., Hinrichs A.S., Molenaar A.J., Pollard K.S., Maqbool N.J., Singh K., Murney R., Zdobnov E.M., Tellam R.L., Medrano J.F., German J.B., Rijnkels M. The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol., 2009, 10(4): R43 CrossRef
  35. Wickramasinghe S., Rincon G., Islas-Trejo A., Medrano J.F. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics, 2012, 13: 45 CrossRef
  36. Hammami H., Rekik B., Bastin C., Soyeurt H., Bormann J., Stoll J, Gengler N. Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level. J. Dairy Sci., 2009, 92(9): 4604-4612 CrossRef
  37. Cai W., Li C., Li J., Song J., Zhang S. Integrated small RNA sequencing, transcriptome and GWAS data reveal microRNA regulation in response to milk protein traits in Chinese Holstein cattle. Front. Genet., 2021, 12: 726706 CrossRef
  38. Dysin A.P., Barkova O.Y., Pozovnikova M.V. The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Noncoding RNA, 2021, 7(4): 78 CrossRef
  39. Ren W., Zhang Y., Dingkao R., Huang C., Ma X., Wu X., La Y., Chu M., Bao P., Guo X., Pei J., Yan P., Liang C. Comparative study of the expression profiles of miRNAs of milk-derived exosomes of yak and Jeryak. Animals (Basel), 2022, 12(22): 3189 CrossRef
  40. Deb R., Sengar G.S. Comparative miRNA signatures among Sahiwal and Frieswal cattle breeds during summer stress. Biotech., 2021, 11(2): 79 CrossRef
  41. Braud M., Magee D.A., Park S.D., Sonstegard T.S., Waters S.M., MacHugh D.E., Spillane C. Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes. Front. Genet., 2017, 8: 3 CrossRef
  42. Liu Y., Xu J., Chen M., Wang C., Li S. A unified STR profiling system across multiple species with whole genome sequencing data. BMC Bioinformatics, 2019, 20(Suppl. 24): 671 CrossRef
  43. Cui W., Jin X., Guo Y., Chen C., Zhang W., Wang Y., Lan J., Zhu B. Development and validation of a novel five-dye short tandem repeat panel for forensic identification of 11 species. Front. Genet., 2020, 11: 1005 CrossRef
  44. Forutan M., Ansari Mahyari S., Baes C., Melzer N., Schenkel F.S., Sargolzaei M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genomics, 2018, 19(1): 98 CrossRef
  45. Häfliger I.M., Spengeler M., Seefried F.R., Drögemüller C. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Sci. Rep., 2022, 12(1): 5435 CrossRef
  46. Liu X., Tian D., Li C., Tang B., Wang Z., Zhang R., Pan Y., Wang Y., Zou D., Zhang Z., Song S. GWAS Atlas: an updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Res., 2023, 51(D1): D969-D976 CrossRef
  47. CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Res., 2023, 51(D1): D18-D28 CrossRef
  48. Rigden D.J., Fernández X.M. The 2023 Nucleic Acids Research Database Issue and the online molecular biology database collection. Nucleic Acids Res., 2023, 51(D1): D1-D8 CrossRef
  49. Flori L., Fritz S., Jaffrézic F., Boussaha M., Gut I., Heath S., Foulley J.L., Gautier M. The genome response to artificial selection: a case study in dairy cattle. PLoS ONE, 2009, 4(8): e6595 CrossRef
  50. Prakapenka D., Liang Z., Jiang J., Ma L., Da Y. A large-scale genome-wide association study of epistasis effects of production traits and daughter pregnancy rate in U.S. Holstein cattle. Genes (Basel), 2021, 12(7): 1089 CrossRef
  51. Dachs N., Upadhyay M., Hannemann E., Hauser A., Krebs S., Seichter D., Russ I., Gehrke L.J., Thaller G., Medugorac I. Quantitative trait locus for calving traits on Bos taurus autosome 18 in Holstein cattle is embedded in a complex genomic region. J. Dairy Sci., 2023, 106(3): 1925-1941 CrossRef
  52. Huang Y., Li Y., Wang X., Yu J., Cai Y., Zheng Z., Li R., Zhang S., Chen N., Asadollahpour Nanaei H., Hanif Q., Chen Q., Fu W., Li C., Cao X., Zhou G., Liu S., He S., Li W., Chen Y., Chen H., Lei C., Liu M., Jiang Y. An atlas of CNV maps in cattle, goat and sheep. Sci. China Life Sci., 2021, 64(10): 1747-1764 CrossRef
  53. Revay T., Quach A.T., Maignel L., Sullivan B., King W.A. Copy number variations in high and low fertility breeding boars. BMC Genomics, 2015, 16(1): 280 CrossRef
  54. Fontanesi L., Martelli P.L., Scotti E., Russo V., Rogel-Gaillard C., Casadio R., Vernesi C. Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics, 2012, 100(4): 245-251 CrossRef
  55. Davoudi P., Do D.N., Rathgeber B., Colombo S.M., Sargolzaei M., Plastow G., Wang Z., Karimi K., Hu G., Valipour S., Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics, 2022, 23(1): 649 CrossRef
  56. Khlopova N.S., Glazko T.T., Glazko V.I. Constitutive and variable components of gene expression profiles in pig liver. Russ. J. Genet. Appl. Res., 2011, 1: 302-307 CrossRef
  57. Avvaru A.K., Sharma D., Verma A., Mishra R.K., Sowpati D.T. MSDB: a comprehensive, annotated database of microsatellites. Nucleic Acids Res., 2020, 48(D1): D155-D159 CrossRef
  58. Zattera M.L., Bruschi D.P. Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells, 2022, 11(21): 3373 CrossRef
  59. Gharesouran J., Hosseinzadeh H., Ghafouri-Fard S., Taheri M., Rezazadeh M. STRs: ancient architectures of the genome beyond the sequence. J. Mol. Neurosci., 2021, 71(12): 2441-2455 CrossRef
  60. Verbiest M., Maksimov M., Jin Y., Anisimova M., Gymrek M., Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J. Evol. Biol., 2023, 36(2): 321-336 CrossRef
  61. Astolfi P., Bellizzi D., Sgaramella V. Frequency and coverage of trinucleotide repeats in eukaryotes. Gene, 2003, 317(1-2): 117-125 CrossRef
  62. Arslan A. Compendious survey of protein tandem repeats in inbred mouse strains. BMC Genom. Data, 2022, 23(1): 62 CrossRef
  63. Wang X., Budowle B., Ge J. USAT: a bioinformatic toolkit to facilitate interpretation and comparative visualization of tandem repeat sequences. BMC Bioinformatics, 2022, 23(1): 497 CrossRef
  64. Jafarian Z., Khamse S., Afshar H., Khorshid H.R.K., Delbari A., Ohadi M. Natural selection at the RASGEF1C (GGC) repeat in human and divergent genotypes in late-onset neurocognitive disorder. Sci. Rep., 2021, 11(1): 19235 CrossRef
  65. Khamse S., Alizadeh S., Bernhart S.H., Afshar H., Delbari A., Ohadi M. A (GCC) repeat in SBF1 reveals a novel biological phenomenon in human and links to late onset neurocognitive disorder. Sci. Rep., 2022, 12(1): 15480 CrossRef
  66. Khamse S., Jafarian Z., Bozorgmehr A., Tavakoli M., Afshar H., Keshavarz M., Moayedi R., Ohadi M. Novel implications of a strictly monomorphic (GCC) repeat in the human PRKACB gene. Sci. Rep., 2021, 11(1): 20629 CrossRef
  67. Khamse S., Arabfard M., Salesi M., Behmard E., Jafarian Z., Afshar H., Khazaei M., Ohadi M. Predominant monomorphism of the RIT2 and GPM6B exceptionally long GA blocks in human and enriched divergent alleles in the disease compartment. Genetica, 2022, 150(1): 27-40 CrossRef
  68. Cheng M., Xie D., Price M., Zhou C., Zhang X.. Comparative analysis of microsatellites in coding regions provides insights into the adaptability of the giant panda, polar bear and brown bear. Genetica, 2022, 150(6): 355-366 CrossRef
  69. Song X., Yang T., Zhang X., Yuan Y., Yan X., Wei Y., Zhang J., Zhou C.. Comparison of the microsatellite distribution patterns in the genomes of Euarchontoglires at the taxonomic level. Front. Genet., 2021, 12: 622724 CrossRef
  70. Verbiest M.A., Delucchi M., Bilgin Sonay T., Anisimova M. Beyond microsatellite instability: intrinsic disorder as a potential link between protein short tandem repeats and cancer. Front. Bioinform., 2021, 1: 685844 CrossRef
  71. Gymrek M., Willems T., Guilmatre A., Zeng H., Markus B., Georgiev S., Daly M.J., Price A.L., Pritchard J.K., Sharp A.J., Erlich Y. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat. Genet., 2016, 48(1): 22-29 CrossRef
  72. Kinney N., Kang L., Bains H., Lawson E., Husain M., Husain K., Sandhu I., Shin Y., Carter J.K., Anandakrishnan R., Michalak P., Garner H. Ethnically biased microsatellites contribute to differential gene expression and glutathione metabolism in Africans and Europeans. PLoS ONE, 2021, 16(3): e0249148 CrossRef
  73. Basu S., Mackowiak S.D., Niskanen H., Knezevic D., Asimi V., Grosswendt S., Geertsema H., Ali S., Jerković I., Ewers H., Mundlos S., Meissner A., Ibrahim D.M., Hnisz D. Unblending of transcriptional condensates in human repeat expansion disease. Cell, 2020, 181(5): 1062-1079.e30 CrossRef
  74. Paul S., Dansithong W., Figueroa K.P., Scoles D.R., Pulst S.M. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat. Commun., 2018, 9(1): 3648 CrossRef
  75. Johnson S.L., Tsou W.L., Prifti M.V., Harris A.L., Todi S.V. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front. Mol. Neurosci., 2022, 15: 974167 CrossRef
  76. Loureiro J.R., Oliveira C.L., Silveira I. Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiol. Aging, 2016, 39: 174-183 CrossRef
  77. Loureiro J.R., Castro A.F., Figueiredo A.S., Silveira I. Molecular mechanisms in pentanucleotide repeat diseases. Cells, 2022, 11(2): 205 CrossRef
  78. Li Y., Lu Y., Polak U., Lin K., Shen J., Farmer J., Seyer L., Bhalla A.D., Rozwadowska N., Lynch D.R., Butler J.S., Napierala M. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum. Mol. Genet., 2015, 24(24): 6932-6943 CrossRef
  79. Jain A., Vale R.D. RNA phase transitions in repeat expansion disorders. Nature, 2017, 546(7657): 243-247 CrossRef
  80. Isiktas A.U., Eshov A., Yang S., Guo J.U. Systematic generation and imaging of tandem repeats reveal base-pairing properties that promote RNA aggregation. Cell Rep. Methods, 2022, 2(11): 100334 CrossRef
  81. Murmann A.E., Patel M., Jeong S.Y., Bartom E.T., Jennifer Morton A., Peter M.E. The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference. Cell Death & Disease, 2022, 13(12): 1078 CrossRef
  82. Nguyen L., Cleary J.D., Ranum L.P.W. Repeat-associated non-ATG translation: molecular mechanisms and contribution to neurological disease. Annu. Rev. Neurosci., 2019, 42: 227-247 CrossRef
  83. Li Y.C., Korol A.B., Fahima T., Beiles A., Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol., 2002, 11(12): 2453-2465 CrossRef
  84. Chistiakov D.A., Hellemans B., Volckaert F.A. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fsh genetics. Aquaculture, 2006, 255(1-4): 1-29 CrossRef
  85. Sun J.X., Helgason A., Masson G., Ebenesersdóttir S.S., Li H., Mallick S., Gnerre S., Patterson N., Kong A., Reich D., Stefansson K. A direct characterization of human mutation based on microsatellites. Nat. Genet., 2012, 44(10): 1161-1165 CrossRef
  86. Eckert K.A., Hile S.E. Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Mol. Carcinog., 2009, 48(4): 379-388 CrossRef
  87. Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA, 2010, 107(3): 961-968 CrossRef
  88. Rajaei M., Saxena A.S., Johnson L.M., Snyder M.C., Crombie T.A., Tanny R.E., Andersen E.C., Joyner-Matos J., Baer C.F. Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans. Genome Res., 2021, 31(9): 1602-1613 CrossRef
  89. Brand C.L., Levine M.T. Functional diversification of chromatin on rapid evolutionary timescales. Annu. Rev. Genet., 2021, 55: 401-425 CrossRef
  90. Murat P., Guilbaud G., Sale J.E. DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Genome Biol., 2020, 21(1): 209 CrossRef
  91. Stein M., Hile S.E., Weissensteiner M.H., Lee M., Zhang S., Kejnovský E., Kejnovská I., Makova K.D., Eckert K.A. Variation in G-quadruplex sequence and topology differentially impacts human DNA polymerase fidelity. DNA Repair (Amst), 2022, 119: 103402 CrossRef
  92. Wheeler V.C., Dion V. Modifiers of CAG/CTG repeat instability: insights from mammalian models. Journal of Huntington’s Disease, 2021, 10(1): 123-148 CrossRef
  93. Bansal A., Kaushik S., Kukreti S. Non-canonical DNA structures: diversity and disease association. Front. Genet., 2022, 13: 959258 CrossRef
  94. Georgakopoulos-Soares I., Chan C.S.Y., Ahituv N., Hemberg M. High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol., 2022, 23(1): 159 CrossRef
  95. Kunkler C.N., Schiefelbein G.E., O’Leary N.J., McCown P.J., Brown J.A. A single natural RNA modification can destabilize a U•A-T-rich RNA•DNA-DNA triple helix. RNA, 2022, 28(9): 1172-1184 CrossRef
  96. Brown J.A. Unraveling the structure and biological functions of RNA triple helices. Wiley Interdiscip. Rev. RNA, 2020, 11(6): e1598 CrossRef
  97. Bowater R.P., Bohálová N., Brázda V. Interaction of proteins with inverted repeats and cruciform structures in nucleic acids. Int. J. Mol. Sci., 2022, 23(11): 6171 CrossRef
  98. Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol., 2011, 12: 33 CrossRef
  99. Gao Z., Moorjani P., Sasani T.A., Pedersen B.S., Quinlan A.R., Jorde L.B., Amster G., Przeworski M. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl. Acad. Sci. USA, 2019, 116(19): 9491-9500 CrossRef
  100. Mitra I., Huang B., Mousavi N., Ma N., Lamkin M., Yanicky R., Shleizer-Burko S., Lohmueller K.E., Gymrek M. Patterns of de novo tandem repeat mutations and their role in autism. Nature, 2021, 589(7841): 246-250 CrossRef
  101. Hannan A.J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet., 2018, 19(5): 286-298 CrossRef
  102. Steely C.J., Watkins W.S., Baird L., Jorde L.B. The mutational dynamics of short tandem repeats in large, multigenerational families. Genome Biol., 2022, 23(1): 253 CrossRef
  103. McGurk M.P., Barbash D.A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res., 2018, 28(5): 714-725 CrossRef
  104. Nishiyama E., Ohshima K. Cross-kingdom commonality of a novel insertion signature of RTE-related short retroposons. Genome Biol Evol., 2018, 10(6): 1471-1483 CrossRef
  105. Paço A., Freitas R., Vieira-da-Silva A. Conversion of DNA sequences: from a transposable element to a tandem repeat or to a gene. Genes (Basel), 2019, 10(12): 1014 CrossRef
  106. Richard G.F., Kerrest A., Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev., 2008, 72(4): 686-727 CrossRef
  107. López-Giráldez F., Andrés O., Domingo-Roura X., Bosch M. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs. BMC Genomics, 2006, 7: 269 CrossRef
  108. Duffy A.J., Coltman D.W., Wright J.M. Microsatellites at a common site in the second ORF of L1 elements in mammalian genomes. Mamm. Genome, 1996, 7(5): 386-387 CrossRef
  109. Lexa M., Jedlicka P., Vanat I., Cervenansky M., Kejnovsky E. TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting. Bioinformatics, 2020, 36(20): 4991-4999 CrossRef
  110. Glazko V.I., Kosovskiy G.Yu., Glazko T.T. The sources of genome variability as domestication drivers (review).Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(5): 832-851 CrossRef
  111. Ivancevic A.M., Kortschak R.D., Bertozzi T., Adelson D.L. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol., 2018, 19(1): 85 CrossRef
  112. Tellam R.L., Lemay D.G., Van Tassell C.P., Lewin H.A., Worley K.C., Elsik C.G. Unlocking the bovine genome. BMC Genomics, 2009, 10: 193 CrossRef
  113. Kelly C.J., Chitko-McKown C.G., Chuong E.B. Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity. Genome Res., 2022, 32(8): 1474-1486 CrossRef
  114. Mirceta M., Shum N., Schmidt M.H.M., Pearson C.E. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front. Genet., 2022, 13: 985975 CrossRef
  115. de Oliveira T.D., Bertocchi N.A., Kretschmer R., de Oliveira E.H.C., Cioffi M.D.B., Liehr T., de Freitas T.R.O. Genomic organization of microsatellites and LINE-1-like retrotransposons: evolutionary implications for Ctenomys minutus (Rodentia: Ctenomyidae) cytotypes. Animals, 2022, 12(16): 2091 CrossRef
  116. Kryshchuk I.A., Orlov V.N., Cherepanova E.V., Borisov Y.M. Unusual chromosomal polymorphism of the common shrew, Sorex araneus L., in southern Belarus. Comparative Cytogenetics, 2021, 15(2): 159-169 CrossRef
  117. Vorontsov N.N. Razvitie еvolyutsionnykh idey v Mezhdunbiologii. Moscow, 2004 (in Russ.).
  118. Ramírez D., Rodríguez M.E., Cross I., Arias-Pérez A., Merlo M.A., Anaya M., Portela-Bens S., Martínez P., Robles F., Ruiz-Rejón C., Rebordinos L. Integration of maps enables a cytogenomics analysis of the complete karyotype in Solea senegalensis. Int. J. Mol. Sci., 2022, 23(10): 5353 CrossRef
  119. Mudd A.B., Bredeson J.V., Baum R., Hockemeyer D., Rokhsar D.S. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun. Biol., 2020, 3(1): 480 CrossRef
  120. Yin Y., Fan H., Zhou B., Hu Y., Fan G., Wang J., Zhou F., Nie W., Zhang C., Liu L., Zhong Z., Zhu W., Liu G., Lin Z., Liu C., Zhou J., Huang G., Li Z., Yu J., Zhang Y., Yang Y., Zhuo B., Zhang B., Chang J., Qian H., Peng Y., Chen X., Chen L., Li Z., Zhou Q., Wang W., Wei F. Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat. Commun., 2021, 12(1): 6858 CrossRef
  121. Damas J., Corbo M., Kim J., Turner-Maier J., Farré M., Larkin D.M., Ryder O.A., Steiner C., Houck M.L., Hall S., Shiue L., Thomas S., Swale T., Daly M., Korlach J., Uliano-Silva M., Mazzoni C.J., Birren B.W., Genereux D.P., Johnson J., Lindblad-Toh K., Karlsson E.K., Nweeia M.T., Johnson R.N., Zoonomia Consortium, Lewin H.A. Evolution of the ancestral mammalian karyotype and syntenic regions. Proc. Natl. Acad. Sci. USA, 2022, 119(40): e2209139119 CrossRef
  122. Waters P.D., Patel H.R., Ruiz-Herrera A., Álvarez-González L., Lister N.C., Simakov O., Ezaz T., Kaur P., Frere C., Grützner F., Georges A., Graves J.A.M. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl. Acad. Sci. USA, 2021, 118(45): e2112494118 CrossRef
  123. Fritz A.J., Sehgal N., Pliss A., Xu J., Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer, 2019, 58(7): 407-426 CrossRef
  124. Deakin J.E., Potter S., O’Neill R., Ruiz-Herrera A., Cioffi M.B., Eldridge M.D.B., Fukui K., Marshall Graves J.A., Griffin D., Grutzner F., Kratochvíl L., Miura I., Rovatsos M., Srikulnath K., Wapstra E., Ezaz T. Chromosomics: bridging the gap between genomes and chromosomes. Genes (Basel), 2019, 10(8): 627 CrossRef
  125. Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H., Joffe B., Dekker J., Fudenberg G., Solovei I., Mirny L.A. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, 570(7761): 395-399 CrossRef
  126. Kumar R.P., Senthilkumar R., Singh V., Mishra R.K. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays, 2010, 32(2): 165-174 CrossRef
  127. van Kruistum H., Nijland R., Reznick D.N., Groenen M.A.M., Megens H.J., Pollux B.J.A. Parallel genomic changes drive repeated evolution of placentas in live-bearing fish. Mol. Biol. Evol., 2021, 38(6): 2627-2638 CrossRef
  128. Tang X., Li T., Liu S., Wisniewski J., Zheng Q., Rong Y., Lavis L.D., Wu C. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat. Struct. Mol. Biol., 2022, 29(7): 665-676 CrossRef
  129. Foster C.S.P., Van Dyke J.U., Thompson M.B., Smith N.M.A., Simpfendorfer C.A., Murphy C.R., Whittington C.M. Different genes are recruited during convergent evolution of pregnancy and the placenta. Mol. Biol. Evol., 2022, 39(4): msac077 CrossRef
  130. Glazko V.I., Andreichenko I.N., Kovalchuk S.N., Glazko T.T., Kosovsky G.Yu. Candidate genes for control of cattle milk production traits. Russ. Agricult. Sci., 2016, 42: 458-464 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)