PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.2.237eng

UDC: 579.62:[579.22+579.25

Acknowledgements:
The work was carried out within the framework of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (topic No. 0532-2021-0004 “Development of methodological approaches to monitoring, control and containment of antibiotic resistance of opportunistic microorganisms in animal husbandry”).

 

MOLECULAR MECHANISMS AND GENETIC DETERMINANTS OF RESISTANCE TO ANTIBACTERIAL DRUGS IN MICROORGANISMS (review)

V.D. Zubareva , O.V. Sokolova, N.A. Bezborodova,
I.A. Shkuratova, A.S. Krivinogova, M.V. Bytov

Ural Federal Agrarian Scientific Research Centre UB RAS, 112a, ul. Belinskogo, Ekaterinburg, 620142 Russia, е-mail zzub97@mail.ru ( corresponding author), nauka_sokolova@mail.ru, info@urnivi.ru, tel-89826512934@yandex.ru, bytovmaks@mail.ru

ORCID:
Zubareva V.D. orcid.org/0000-0003-0284-0276
Shkuratova I.A. orcid.org/0000-0003-0025-3545
Sokolova O.V. orcid.org/0000-0002-1169-4090
Krivonogova A.S. orcid.org/0000-0003-1918-3030
Bezborodova N.A. orcid.org/0000-0003-2793-5001
Bytov M.V. orcid.org/0000-0002-3622-3770

November 9, 2021

 

The emergence of antibiotic resistance is a serious public health problem, since antibiotic-resistant bacteria that develops in conditions of agro-industrial enterprises can easily transmit to humans through products and raw materials of animal origin and contaminate the environment with agricultural waste. Several reviews cover the problem (C. Manyi-Loh et al., 2018; A.N. Panin et al., 2017). A significant number of publications describe the mechanisms of antibiotic resistance, including modification of the target affected by the drug; the acquisition of metabolic pathways alternative to those inhibited by an antimicrobial agent; overproduction of the target enzyme; enzymatic inactivation and active efflux of the antibiotic (it’s excretion outside the microbial cell). These mechanisms can be natural for some microorganisms or acquired from other microorganisms (M.F. Varela et al., 2021; W.C. Reygaert, 2018; A.L. Bisekenova et al., 2015). Understanding these mechanisms will allow us to choose the best treatment option for each specific infectious disease and develop antimicrobial drugs that prevent the spread of resistant microorganisms. The most clinically significant antibiotic resistance genes are usually located on different mobile genetic elements (MGE) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera) (C.O. Vrancianu et al., 2020). Among the three main mechanisms involved in horizontal gene transfer, transformation of antibiotic resistance genes between bacterial species happens rarely. However, conjugation with the participation of mobile genetic elements, such as transposons and plasmids, is the most effective and important method of spreading antibiotic resistance (J.M. Bello-López et al., 2019). The purpose of this review is to describe antibiotic resistance genes distinctive for the microbiota of farm animals under the conditions of the agro-industrial complexes, as well as the mechanisms of the formation of antibacterial resistance to antimicrobial drugs used in veterinary medicine. In addition, this report covers the direct localization of the genetic determinants of antibiotic resistance, outlines the main measures to control antibiotic resistance, which include i) reducing the use of antibiotics due to improving animals' welfare and living conditions and ii) monitoring and supervision of the spread of antibiotic-resistant bacteria.

Keywords: antibiotic resistance, livestock sector, mechanisms of resistance, antibiotic drugs, mobile genetic elements, genetic determinants, microorganisms.  

 

REFERENCES

  1. Communication from the commission to the council and the European parliament. A European one health action plan against antimicrobial resistance (AMR) COM/2017/0339 final. European Commission, 2017.
  2. Hassan Y.I., Lahaye L., Gong M.M., Peng J., Gong J., Liu S., Gay C.G., Yang C. Innovative drugs, chemicals, and enzymes within the animal production chain. Veterinary Research, 2018, 49: 71 CrossRef
  3. Vrancianu C.O., Gheorghe I., Czobor I.B., Chifiriuc M.C. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms, 2020, 8(6): 935 CrossRef
  4. Lim S.-K., Kim D., Moon D.-C., Cho Y., Rho M. Antibiotic resistomes discovered in the gut microbiomes of Korean swine and cattle. GigaScience, 2020, 9(5): giaa043 CrossRef
  5. Broom L.J. The sub-inhibitory theory for antibiotic growth promoters. Poultry Science, 2017, 96(9): 3104-3108 CrossRef
  6. Redondo-Salvo S., Fernández-López R., Ruiz R., Vielva L., de Toro M., Rocha E.P.C., Garcillán-Barcia M.P., de la Cruz F. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nature Communications, 2020, 11: 3602 CrossRef
  7. Zalewska M., Błażejewska A., Czapko A., Popowska M. Antibiotics and antibiotic resistance genes in animal manure — consequences of its application in agriculture. Frontiers in Microbiology, 2021, 12: 610656 CrossRef
  8. Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A., Laxminarayan R. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Science,2015, 112(18): 5649-5654 CrossRef
  9. Minsel'khoz RF. Prikaz ob ogranichenii ispol'zovaniya antibiotikov dlya lecheniya zhivotnykh: proekt normativno-pravovykh aktov, 2021 [Order to restrict the use of antibiotics for the treatment of animals: draft regulations, 2021] (in Russ.).
  10. He Y., Yuan Q., Mathieu J., Stadler L., Senehi N., Sun R., Alvarez P.J.J. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water, 2020, 3: 4 CrossRef
  11. Wall B.A., Mateus A., Marshall L., Pfeiffer D.U., Lubroth J., Ormel H.J., Otto P., Patriarchi A. Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. FAO, 2016.
  12. Bisekenova A.L., Ramazanova B.A., Adambekov D.A., Bekbolatova K.A. Vestnik Kazakhskogo Natsional'nogo meditsinskogo universiteta, 2015, (3): 223-227 (in Russ.).
  13. Zakirov I.I., Kadyrova E.R., Safina A.I., Kayumov A.R. Pediatriya, 2018, 97(2): 176-186 CrossRef (in Russ.).
  14. Pandey A., Agnihotri V. Antimicrobials from medicinal plants: Research initiatives, challenges, and the future prospects. In: Biotechnology of bioactive compounds: sources and applications. V.K. Gupta, M.G. Tuohy (eds.). John Wiley & Sons, 2015.
  15. Cesur S., Demiröz A.P. Antibiotics and the mechanisms of resistance to antibiotics. Medical Journal of Islamic World Academy of Sciences,2013,21(4): 138-142 CrossRef
  16. Vergalli J., Bodrenko I.V., Masi M., Moynié L., Acosta-Gutiérrez S., Naismith J.H., Davin-Regli A., Ceccarelli M., van den Berg B., Winterhalter M., Pagès J.M. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nature Reviews Microbiology, 2020, 18(3): 164-176 CrossRef
  17. Alcalde-Rico M., Hernando-Amado S., Blanco P., Martínez J.L. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Frontiers in Microbiology, 2016, 7: 1483 CrossRef
  18. Hernando-Amado S., Blanco P., Alcalde-Rico M., Corona F., Reales-Calderón J.A., Sánchez M.B., Martínez J.L. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resistance Updates, 2016, 28: 13-27 CrossRef
  19. Reygaert W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 2018, 4(3): 482-501 CrossRef
  20. Housseini B., Issa K., Phan G., Broutin I. Functional mechanism of the efflux pumps transcription regulators from Pseudomonas aeruginosa based on 3D structures. Frontiers in Molecular Biosciences, 2018, 5: 57 CrossRef
  21. Ebbensgaard A.E., Løbner-Olesen A., Frimodt-Møller J. The role of efflux pumps in the transition from low-level to clinical antibiotic resistance. Antibiotics, 2020, 9(12): 855 CrossRef
  22. Johnson Z.L., Chen J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell, 2017, 168(6): 1075-1085.e9 CrossRef
  23. Verhalen B., Dastvan R., Thangapandian S., Peskova Y., Koteiche H.A., Nakamoto R.K., Tajkhorshid E., Mchaourab H.S. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature, 2017, 543(7647): 738-741 CrossRef
  24. Du D., Wang-Kan X., Neuberger A., van Veen H.W., Pos K.M., Piddock L., Luisi B.F. Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology, 2018, 16(9): 523-539 CrossRef
  25. Toba S., Minato Y., Kondo Y., Hoshikawa K., Minagawa S., Komaki S., Kumagai T., Matoba Y., Morita D., Ogawa W., Gotoh N., Tsuchiya T., Kuroda T. Comprehensive analysis of resistance-nodulation-cell division superfamily (RND) efflux pumps from Serratia marcescens, Db10. Scientific Reports, 2019, 9(1): 4854 CrossRef
  26. Hassan K.A., Liu Q., Elbourne L., Ahmad I., Sharples D., Naidu V., Chan C.L., Li L., Harborne S., Pokhrel A., Postis V., Goldman A., Henderson P., Paulsen I.T. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Research in Microbiology, 2018, 169(7-8): 450-454 CrossRef
  27. Egorov A.M., Ulyashova M.M., Rubtsova M.Y. Bacterial enzymes and antibiotic resistance. Acta Naturae, 2018, 10(4): 33-48 CrossRef
  28. Giedraitienė A., Vitkauskienė A., Naginienė R., Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina, 2011, 47(3): 137-146 CrossRef
  29. Khaitovich A.B. Krymskii zhurnal eksperimental'noi i klinicheskoi meditsiny, 2018, 8(2): 81-95 (in Russ.).
  30. Mayer C., Takiff H. The molecular genetics of fluoroquinolone resistance in Mycobacterium tuberculosis. Microbiology Spectrum, 2014, 2(4): MGM2-2013 CrossRef
  31. Bush N.G., Diez-Santos I., Abbott L.R., Maxwell A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules, 2020, 25(23): 5662 CrossRef
  32. Zemlyanko O.M., Rogoza T.M., Zhuravleva G.A. Ekologicheskaya genetika, 2018, 16(3): 4-17 CrossRef (in Russ.).
  33. Boothe D.M. β-Lactam Antibiotics. Pharmacology. MSD Veterinary Manual, 2015. Available: https://www.msdvetmanual.com/pharmacology/antibacterial-agents/β-lactam-antibiotics. Accessed: 01.11.2021.
  34. Peterson E., Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 2018, 9: 2928 CrossRef
  35. Valderrama-Carmona P., Cuartas J.H., Castaño D.C., Corredor M. The role of Pseudomonas aeruginosa RNA methyltransferases in antibiotic resistance. In: Pseudomonas Aeruginosa — an armory within. D. Sriramulu (ed.). IntechOpen, London, 2019 CrossRef
  36. Bezborodova N.A., Sokolova O.V., Shkuratova I.A., Lysova Ya.Yu., Isakova M.N., Kozhukhovskaya V.V. Sensitivity and resistance of the microbiota of reproductive organs and mammary gland of cows to anti-microbial agents in cases of inflammation. International Journal of Biology and Biomedical Engineering, 2020, 14: 49-54 CrossRef
  37. Sultan I., Rahman S., Jan A.T., Siddiqui M.T., Mondal A.H., Haq Q. Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Frontiers in Microbiology, 2018, 9: 2066 CrossRef
  38. Varela M.F., Stephen J., Lekshmi M., Ojha M., Wenzel N., Sanford L.M., Hernandez A.J., Parvathi A., Kumar S.H. Bacterial resistance to antimicrobial agents. Antibiotics, 2021, 10(5): 593 CrossRef
  39. Vrancianu C.O., Popa L.I., Bleotu C., Chifiriuc M.C. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance. Frontiers in Microbiology, 2020, 11: 761 CrossRef
  40. Bello-López J.M., Cabrero-Martínez O.A., Ibáñez-Cervantes G., Hernández-Cortez C., Pelcastre-Rodríguez L.I., Gonzalez-Avila L.U., Castro-Escarpulli G. Horizontal gene transfer and its association with antibiotic resistance in the genus Aeromonas spp. Microorganisms, 2019, 7(9): 363 CrossRef
  41. Nolivos S., Cayron J., Dedieu A., Page A., Delolme F., Lesterlin C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science, 2019, 364(6442): 778-782 CrossRef
  42. Vandecraen J., Chandler M., Aertsen A., Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Critical Reviews in Microbiology, 2017, 43(6): 709-730 CrossRef
  43. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Research, 2006, 34 (suppl_1): D32-D36 CrossRef
  44. Babakhani S., Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. Journal of Basic Microbiology, 2018, 58(11): 905-917 CrossRef
  45. Belaynehe K.M., Shin S.W., Yoo H.S. Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms. BMC Veterinary Research, 2018, 14(1): 340 CrossRef
  46. da Silva Filho A.C., Raittz R.T., Guizelini D., De Pierri C.R., Augusto D.W., Dos Santos-Weiss I., Marchaukoski J.N. Comparative analysis of genomic island prediction tools. Frontiers in Genetics, 2018, 9: 619 CrossRef
  47. McMillan E.A., Gupta S.K., Williams L.E., Jové T., Hiott L.M., Woodley T.A., Barrett J.B., Jackson C.R., Wasilenko J.L., Simmons M., Tillman G.E., McClelland M., Frye J.G. Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with united states food animals. Frontiers in Microbiology, 2019, 10: 832 CrossRef
  48. Sophie R., Thomas J., Margaux G., Emilie P., Aurore T., Carmen T., Marie-Cécile P. Expression of the aac(6)-Ib-cr gene in class 1 integrons. Antimicrobial Agents and Chemotherapy, 2021, 61(5): e02704-16 CrossRef
  49. Vetting M.W., Park C.H., Hegde S.S., Jacoby G.A., Hooper D.C., Blanchard J.S. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6')-Ib-cr variant. Biochemistry, 2008, 47(37): 9825-9835 CrossRef
  50. Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.-L., Cheng A.A., Liu S., Min S.Y., Miroshnichenko A., Tran H.-K., Werfalli R.E., Nasir J.A., Oloni M., Speicher D.J., Florescu A., Singh B., Faltyn M., Hernandez-Koutoucheva A., Sharma A.N., Bordeleau E., Pawlowski A.C., Zubyk H.L., Dooley D., Griffiths E., Maguire F., Winsor G.L., Beiko R.G., Brinkman F.S.L., Hsiao W.W.L., Domselaar G.V., McArthur A.G. CARD 2020: antibiotic resistome surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 2020, 48(D1): D517-D525.
  51. Kovtun A.S., Alekseeva M.G., Averina O.V., Danilenko V.N. Vestnik RGMU, 2017, 2: 14-19 CrossRef (in Russ.).
  52. Goessens W.H., van der Bij A.K., van Boxtel R., Pitout J. D., van Ulsen P., Melles D.C., Tommassen J. Antibiotic trapping by plasmid-encoded CMY-2 β-lactamase combined with reduced outer membrane permeability as a mechanism of carbapenem resistance in Escherichia coli. AntimicrobialAgentsand Сhemotherapy, 2013, 57(8): 3941-3949 CrossRef
  53. Chang P.H., Juhrend B., Olson T.M., Marrs C.F., Wigginton K.R. Degradation of extracellular antibiotic resistance genes with UV254 treatment. Environmental Science & Technology, 2017, 51(11): 6185-6192 CrossRef
  54. Potron A., Poirel L., Croizé J., Chanteperdrix V., Nordmann P. First ESBL-Derivative CARB-Type beta-lactamase from Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2009, 53(7): 3010-3016 CrossRef
  55. Bevan E.R., Jones A.M., Hawkey P.M. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. The Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2145-2155 CrossRef
  56. Falgenhauer L., Ghosh H., Guerra B., Yao Y., Fritzenwanker M., Fischer J., Helmuth R., Imirzalioglu C., Chakraborty T. Comparative genome analysis of IncHI2 VIM-1 carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany. Veterinary Microbiology, 2017, 200: 114-117 CrossRef
  57. Tato M., Coque T.M., Baquero F., Cantón R. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2010, 54(1): 320-327 CrossRef
  58. Jiansheng H., Xiaolei H., Yunan Z., Yang S., Hui D., Rongzhen W., Zhigang Z., Jiansong J. Comparative analysis of blaKPC expression in Tn4401 transposons and the Tn3-Tn4401 chimera. Antimicrobial Agents and Chemotherapy, 2021, 63(5): e02434-18 CrossRef
  59. Vikram A., Schmidt J.W. Functional blaKPC-2 sequences are present in U.S. beef cattle feces regardless of antibiotic use. Foodborne Pathogens and Disease, 2018, 15(7): 444-448 CrossRef
  60. Clark D.P., Pazdernik N.J. Transgenic animals. In: Biotechnology, 2nd ed. Elsevier, Amsterdam, 2016: 493-521 CrossRef
  61. Jiang H., Cheng H., Liang Y., Yu S., Yu T., Fang J., Zhu C. Diverse mobile genetic elements and conjugal transferability of sulfonamide resistance genes (sul1, sul2, and sul3) in Escherichia coli isolates from Penaeus vannamei and pork from large markets in Zhejiang, China. Frontiers in Microbiology, 2019, 10: 1787 CrossRef
  62. Wang Y.-H., Li X.-N., Chen C., Zhang J., Wang G.-Q. Detection of floR gene and active efflux mechanism of Escherichia coli in Ningxia, China. Microbial Pathogenesis, 2018, 117: 310-314 CrossRef
  63. Shen J., Wang Y., Schwarz S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2013, 68(8): 1697-1706 CrossRef
  64. Argudín M.A., Deplano A., Meghraoui A., Dodémont M., Heinrichs A., Denis O., Nonhoff C., Roisin S. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics, 2017, 6(2): 12 CrossRef
  65. Yang T.-Y., Lu P.-L., Tseng S.-P. Update on fosfomycin-modified genes in Enterobacteriaceae. Journal of Microbiology, Immunology and Infection, 2019, 52(1): 9-21 CrossRef
  66. Yang S., Deng W., Liu S., Yu X., Mustafa G.R., Chen S., He L., Ao X., Yang Y., Zhou K., Li B., Han X., Xu X., Zou L. Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. Journal of Global Antimicrobial Resistance, 2020, 21: 420-426 CrossRef
  67. Wan T.W., Hung W.C., Tsai J.C., Lin Y.T., Lee H., Hsueh P.R., Lee T.F., Teng L.J. Novel structure of Enterococcus faecium-originated ermb-positive Tn1546-like element in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2016, 60(10): 6108-6114 CrossRef
  68. Nikibakhsh M., Firoozeh F., Badmasti F., Kabir K., Zibaei M. Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients. BMC Infectious Diseases, 2021, 21(1): 782 CrossRef
  69. Wardal E., Kuch A., Gawryszewska I., Żabicka D., Hryniewicz W., Sadowy E. Diversity of plasmids and Tn1546-type transposons among VanA Enterococcus faecium in Poland. European Journal of Clinical Microbiology & Infectious Diseases, 2017, 36(2): 313-328 CrossRef
  70. Kareem S.M., Al-Kadmy I., Kazaal S.S., Mohammed Ali A.N., Aziz S.N., Makharita R.R., Algammal A.M., Al-Rejaie S., Behl T., Batiha G.E., El-Mokhtar M.A., Hetta H.F. Detection of gyrA and parC mutations and prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae. Infection and Drug Resistance, 2021, 14: 555-563 CrossRef
  71. Vidovic N., Vidovic S. Antimicrobial resistance and food animals: influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics, 2020, 9(2): 52 CrossRef
  72. Sharif Z., Peiravian F., Salamzadeh J., Mohammadi N.K., Jalalimanesh A. Irrational use of antibiotics in Iran from the perspective of complex adaptive systems: redefining the challenge. BMC Public Health, 2021, 21(1): 778 CrossRef
  73. Ma F., Xu S., Tang Z., Li Z., Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 2021, 3(1): 32-38 CrossRef
  74. Collignon P.C., Conly J.M., Andremont A., McEwen S.A., Aidara-Kane A., WHO-AGISAR, Agerso Y., Andremont A., Collignon P., Conly J., Dang Ninh T., Donado-Godoy P., Fedorka-Cray P., Fernandez H., Galas M., Irwin R., Karp B., Matar G., McDermott P., McEwen S., Mitema E., Reid-Smith R., Scott H.M., Singh R., DeWaal C.S., Stelling J., Toleman M., Watanabe H., Woo G.J. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clinical Infectious Diseases, 2016, 63(8): 1087-1093 CrossRef  
  75. Wijesekara P.N.K., Kumbukgolla W.W., Jayaweera J.A.A.S., Rawat D. Review on usage of vancomycin in livestock and humans: maintaining its efficacy, prevention of resistance and alternative therapy. Veterinary Sciences, 2017, 4(1): 6 CrossRef
  76. Viñes J., Cuscó A., Napp S., Alvarez J., Saez-Llorente J.L., Rosàs-Rodoreda M., Migura-Garcia L. Transmission of similar Mcr-1 carrying plasmids among different Escherichia coli lineages isolated from livestock and the farmer. Antibiotics, 2021, 10(3): 313 CrossRef
  77. Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 2018, 23(4): 795 CrossRef
  78. Panin A.H., Komarov A.A., Kulikovskii A.V., Makarov D.A. Veterinariya, zootekhniya i biotekhnologiya, 2017, 5: 18-24 (in Russ.).
  79. FAO. Monitoring and surveillance of antimicrobial resistance in bacteria from healthy food animals intended for consumption. Regional Antimicrobial Resistance Monitoring and Surveillance Guidelines, 2019, 1: 9-10.
  80. O’Neill J. Review on antimicrobial resistance: tackling drug-resistant infections globally: final report and recommendations. HM Government and Wellcome Trust, London, 2016.
  81. Windels E.M., Michiels J.E., Van den Bergh B., Fauvart M., Michiels J. Antibiotics: combatting tolerance to stop resistance. mBio, 2019, 10(5): e02095-19 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)