PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.2.316reng

UDC: 636.2:591.1

 

ECONOMIC AND BIOLOGICAL CHARACTERISTICS OF THE FIRST-CALVING HOLSTEIN HEIFERS OF DIFFERENT ORIGIN DURING ACCLIMATIZATION ON A FARM IN CENTRAL RUSSIA

N.V. Samburov1 , Yu.N. Fedorov2

1Ivanov Kursk State Agricultural Academy, 70, ul. K. Marksa, Kursk, 305021 Russia, e-mail samburov_nv@rambler.ru (✉ corresponding author);
2All-Russian Research and Technological Institute of Biological Industry, 17, pos. Biokombinata, Shchelkovskii Region, Moscow Province, 141142 Russia, e-mail fun181@mail.ru

ORCID:
SamburovN.V. orcid.org/ 0000-0003-3124-4262
FedorovYu.N. orcid.org/0000-0001-7268-3734

Received July 21, 2021

 

Making the most of the genetic potential of dairy cattle imported to the Russian Federation is an important and urgent task which requires a detailed study of animals’ acclimatization and adaptation under the conditions at regional livestock enterprises. The aim of the work was to assess body scores, productive and reproductive performance, blood biochemical parameters and composition in the Holstein black-and-white first calving cows (a herd of OOO Molochnik, Bolshesoldatsky District, Kursk Province, 2019-2020). We compared performance of 15 imported heifers of European selection from Denmark (group 1) and 15 heifers from pre-adapted mother cows born on the farm (group 2). The groups were in identical feeding and housing conditions. On average, the cows calved in 23.6 (group 1) and 24.6 months (group 2), having bodyweight of 509.2 and 516.9 kg, respectively. For 305-day lactation, total milk production was 8667 kg with 3.73 % fat for group 1 and 121 kg more with 3.80 % fat for group 2 (the differences are insignificant). Milk yield adjustment to 3.4 % milk fat increased the difference to 314 kg (P > 0.95). In group 1, the milk fat yield was 323.6 kg, or 10.3 kg less compared to group 2 (the differences are insignificant). The difference in milk proteins was also small (3.27 vs. 3.28 %). Total milk protein yield was 283.4 kg vs. 288.2 kg, the milk production coefficients (i.e., fat-corrected milk yield per unit bodyweight) was 1867 kg vs. 1900 kg. Therefore, these findings confirm 93.1 % vs. 93.0 % realization of genetic potential for milk production, 99.5 % vs. 100.7 % for milk fat, and 100.0 % vs. 99.3 % for milk protein. All cows were quite tall, their height at the withers averaged 137.5 cm vs. 135.4 cm, at the sacrum 145.3 vs. 142.4 cm. The total exterior scores, including strong body constitution, well-developed milk traits, and leg condition, in group 1 were higher (P > 0.95) compared to group 2. According to a 100-point evaluation, the cows of group 1 had a slight advantage. Of the classification traits, the score of trunk volume was 0.9 points higher, of udder — 0.9 points higher, of general appearance — 0.8 points higher compered to group 2 (the differences are insignificant). The animals of both group had body type Good+ with 83.0 points vs. 81.7 points for five classification traits compared (the difference is insignificant). At month 6 of lactation, the total blood protein level averaged 83.11 g/l vs. 83.78 g/l. Other biochemical blood parameters (albumin, globulins, glucose, cholesterol, calcium, phosphorus, magnesium, activity of transamination enzymes and alkaline phosphatase) were within the physiological limits. An increased counts of blood leukocytes occurred in the European cows. The hematocrit index in group 1 was significantly higher than in group 2 (P > 0.95), which is apparently due to intensified metabolism. Thus, in the conditions that meet the biological needs of animals, the acclimatization of European breeding cows is quite successful.

Keywords: Holstein cows, first-calf heifers, genetic potential, exterior, body scores, linear body measurements, blood biochemical parameters, total protein, albumin, globulins, aminotransferases, alkaline phosphatase.

 

REFERENCES

  1. Strekozov N.I., Pogodaev S.F. Zootekhniya, 1999, 8: 6-9 (in Russ.).
  2. Shevkhuzhev A.F., Ulimbashev M.B., Smakuev D.R., Tekeev M.A. Sovremennye tekhnologii proizvodstva moloka s ispol'zovaniem genofonda golshtinskogo skota [Modern milk production technologies based on Holstein cattle gene pool]. Moscow, 2015 (in Russ.).
  3. Van Schyndel S.J., Bauman C.A., Pascottini O.B., Renaud D.L., Dubuc J. Kelton D.F. Reproductive management practices on dairy farms: the Canadian national dairy study 2015. Journal of Dairy Science, 2019, 102(2): 1822-1831 CrossRef 
  4. Edwards-Callaway L.N., Walker J., Tucker C.B. Culling decisions and dairy cattle welfare during transport to slaughter in the United States. Frontiers in Veterinary Science,2019, 5: 343 CrossRef
  5. Hadley G.L., Wolf C.A., Harsh S.B. Dairy cattle culling patterns, explanations, and implications. Journal of Dairy Science, 2006, 89(6): 2286-2296 CrossRef
  6. Chiumia D., Chagunda M., Macrae A., Roberts D. Predisposing factors for involuntary culling in Holstein-Friesian dairy cows. JournalofDairyResearch, 2013, 80(1): 45-50 CrossRef
  7. Abylkasymov D., Sudarev N.P., Chargeishvili S.V. Effektivnost' ispol'zovaniya vysokoproduktivnykh korov raznoi selektsii v usloviyakh intensivnoi tekhnologii proizvodstva moloka [Efficiency of using highly productive cows of different selection in intensive dairy farming]. Tver', 2020 (in Russ.).
  8. Roche S.M., Renaud D.L., Genore R., Shock D.A., Bauman C., Croyl S., Kelton D.F., Barkema H.W., Dubuc J., Keefe G.P. Canadian national dairy study: describing Canadian dairy producer practices and perceptions surrounding cull cow management. Journal of Dairy Science, 2020, 4(103): 3414-3421 CrossRef
  9. Dunin I.M., Amerkhanov Kh.A. Zootekhniya, 2017, 6: 2-8 (in Russ.).
  10. Dippel S., Dolezala M., Brenninkmeyerb C. Risk factors for lameness in cubicle housed Austrian Simmental dairy cows. Preventive Veterinary Medicine, 2009, 90: 102-112 CrossRef
  11. Amerkhanov Kh.A. Molochnoe i myasnoe skotovodstvo, 2017, 1: 2-5 (in Russ.).
  12. Miglior F., Muir B.L., and Doormaal B.J. Selection indices in Holstein cattle of various countries. Journal of Dairy Science, 2005, 88(3): 1255-1263 CrossRef
  13. Morozova N.I., Musaev F.A., Ivanova L.V. Fundamental'nye issledovaniya, 2012, 6(2): 405-408 (in Russ.).
  14. Wielgosz-Groth Z., Groth I. Quality of colostrums in cows milked twice or three times daily during the first six days after calving. Annals of Animal Science, 2001, 1(1): 25-37.
  15. Abugaliev S.K. Zootekhniya, 2017, 10: 2-5 (in Russ.).
  16. Konstandoglo A., Foksha V., Stratan G., Stratan D. Evaluation of the exterior of Holstein and Simmental primiparous cows. Scientific Papers. Series D. Animal Science, 2017, 60: 35-39.
  17. Loginov Zh.G., Prokhorenko P.N., Popova N.V. Metodicheskie rekomendatsii po lineinoi otsenke ekster'ernogo tipa v molochnom skotovodstve [Guidelines for linear assessment of the exterior in dairy cattle breeding]. Moscow, 1994 (in Russ.).
  18. Borisenko E.Ya., Baranova K.V., Lisitsyn A.P. Praktikum po razvedeniyu sel'skokhozyaistvennykh zhivotnykh [Workshop on breeding farm animals]. Moscow, 1984 (in Russ.).
  19. Pravila otsenki teloslozheniya docherei bykov-proizvoditelei molochno-myasnykh porod [Rules for assessing the physique of the daughters of bulls-producers of dairy and meat breeds]. Moscow, 1996 (in Russ.).
  20. Kharitonov S.N., Yanchukov I.N., Ermilov A.N. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2011, 4: 103-113 (in Russ.).
  21. Shi C., Zhang J.L., Teng G.H. Mobile measuring system based on LabVIEW for pig body components estimation in a large-scale farm. Computers and Electronics in Agriculture, 2019, 156: 399-405 CrossRef
  22. Merkur'eva E.K. Biometriya v selektsii i genetike sel'skokhozyaistvennykh zhivotnykh [Biometrics in breeding and genetics of farm animals]. Moscow, 1970 (in Russ.).
  23. Barnev V. Zhivotnovodstvo Rossii, 2008, 1: 51 (in Russ.).
  24. Halachmi I., Polak P., Roberts D.J., Klopcic M. Cow body shape and automation of condition scoring. Journal of Dairy Science, 2008, 91(11): 4444-4451 CrossRef
  25. Hewitt A., Olchowy T., James A.S., Fraser B., Ranjbar S., Soust M., Alawneh J.I. Linear body measurements and productivity of subtropical Holstein-Friesian dairy calves. Aust. Vet. J., 2020, 98(7): 280-289 CrossRef
  26. Lukuyu M.N., Gibson J.P., Savage D.B., Duncan A.J., Mujibi F.D.N., Okeyo A.M. Use of body linear measurements to estimate live weigh to crossbred dairy cattle in smallholder farms in Kenya. SpringerPlus, 2016, 5: 63 CrossRef
  27. Broster W.H., Broster V.J. Body score of dairy cows. Journal of Dairy Research, 1998, 65(1): 155-173 CrossRef
  28. Kazarbin D.R. Lineinaya otsenka ekster'era molochnykh korov i ee primenenie v skotovodstve Rossii. Avtoreferat doktorskoi dissertatsii [Linear assessment of the exterior of dairy cows in cattle breeding in Russia. DSc Thesis]. Dubrovitsy, 1997 (in Russ.).
  29. Adushinov D.S. Molochnoe i myasnoe skotovodstvo, 2006, 3: 17-19 (in Russ.).
  30. Seifi H.A., Leblanc S.J., Leslie K.E., Duffield T.F. Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet. J., 2011, 188(2): 216-220 CrossRef
  31. Donadeu F.X., Howes N.L., Esteves C.L., Howes M.P., Byrne T.J., Macrae A.I. Farmer and veterinary practices and opinions related to the diagnosis of mastitis and metabolic disease in UK dairy cows. Frontiers in Veterinary Science, 2020, 7: 127 CrossRef
  32. Mitra V., Metcalf J. Metabolic functions of the liver. Anaesthesia & Intensive Care Medicine, 2012, 13(2): 54-55 CrossRef
  33. Viana M.T., Perez M.C., Ribas V.R., de Martins G.F., de Castro C.M. Leukocyte, red blood cell and morphological adaptation to moderate physical training in rats undernourished in the neonatal period. Rev. Bras. Hematol. Hemoter., 2012, 34(4): 285-291 CrossRef
  34. Pretorius E. The adaptability of red blood cells. Cardiovasc. Diabetol., 2013, 12: 63 CrossRef
  35. Bogdanova A., Kaestner L. The red blood cells on the move! Frontiers in Physiology, 2018, 9: 474 CrossRef
  36. Ulimbashev M.B., Alagirova Zh.T. Adaptive ability of Holstein cattle introduced into new habital conditions. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(2): 247-254 CrossRef
  37. Sulyga N.V., Kovaleva G.P. Zootekhniya, 2010, 2: 4-6 (in Russ.).
  38. Donnik I.M., Shkuratova I.A. Veterinariya Kubani, 2009, 5: 16-17 (in Russ.).
  39. Triwutanon S., Rukkwamsuk T. Patterns of blood biochemical parameters of peripartum dairy cows raised in either smallholder or semi-commercial dairy farms in Thailand. Veterinary World, 2021, 14(3): 649-655. CrossRef
  40. Karamaev V.S., Asonova L.V., Grigor'ev V.S. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2013, 1(39): 77-80 (in Russ.).
  41. Gorlov I.F., Komarova Z.B., Serdyukova YA.P. Vestnik Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2014, 2: 53-54 (in Russ.).
  42. Gorlov I.F., Bozhova S.E., Shakhbasova O.P., Gubareva V.V. Productivity and adaptation capability of Holstein cattle of different genetic selections. Turkish Journal of Veterinary and Animal Sciences, 2016, 40(5): 527-533 CrossRef
  43. Mokhov A.S. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo GAU im. I.T. Trubilina, 2016, 122(08): 774-784 CrossRef (in Russ.).
  44. Petkevich N.S., Kurskaya Yu.A., Ivanova A.I. Dostizheniya nauki i tekhniki APK, 2015, 29(3): 48-50 (in Russ.).   

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)