PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.2.356reng

UDC: 579.6:579.25

Acknowledgements:
The work was carried out within the framework of the state task NIOKTR AAAA-A19-119112290009-1 and scientific project S-26/792.

 

THE CAUSATIVE AGENTS OF COLIBACILLOSIS IN POULTRY: CARRIERS OF GENES ASSOCIATED WITH EXTRAINTESTINAL AND INTESTINAL PATHOGENIC Escherichia coli

J.S. Pospelova1 , M. Starčič Erjavec2, M.V. Kuznetsova1

1Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms UB RAS, 13, ul. Goleva, Perm, 614081 Russia, e-mail gizatullina.julia@yandex.ru (✉ corresponding author), mar@iegm.ru;
2Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia, e-mail marjanca.starcic.erjavec@bf.uni-lj.si

ORCID:
Pospelova J.S. orcid.org/0000-0001-9625-1151
Kuznetsova M.V. orcid.org/0000-0003-2448-4823
Starčič Erjavec M. orcid.org/0000-0003-0200-573X

Received December 13, 2021

 

The expansion and intensification of poultry farming increases the risk of spreading colibacillosis among poultry, so there is an urgent need to monitor avian pathogenic Escherichia coli (APEC), study their genetic diversity and identify strains that pose a threat to human health. Determination of virulence-associated genes and the degree of specific adhesion may be useful for a comprehensive assessment of the epidemic and epizootic significance of E. coli strains isolated from livestock. In this study, an extended molecular analysis of E. coli strains isolated from poultry during outbreaks of colibacillosis was performed with the objective to genotypically characterize the isolated E. coli strains and to evaluate the relationship between genes encoding adhesins and specific adhesion to erythrocytes. It was shown for the first time that the strains were characterized by a high potential for pathogenicity and could be carriers of genes for several pathotypes at once, while the genes of intestinal pathogenic E. coli (IPEC) were detected often than others. A positive adhesive profile for a number of genes correlated positively with the activity of strain adhesion to chicken (Gallus gallus L.) and human erythrocytes. In the study 28 non-clonal E. coli strains, as determined by ERIC-PCR, isolated from various organs (except the intestine) of Ross 308 cross broilers (Gallus gallus L.) with generalized colibacillosis in 2016-2018 were characterized. Polymerase chain reaction (PCR) was used to detect virulence-associated genes characteristic of four different E. coli pathotypes, the APEC, extraintestinal pathogenic (ExPEC), intestinal pathogenic E. coli (IPEC: Enteropathogenic E. coli EPEC, Enterotixigenic E. coli ETEC, Enterohemorrhagic E. coli EHEC, Enteroaggregative E. coli EaggEC), and uropathogenic E. coli (UPEC). Previously published protocols were used for all types of PCRs and amplifications were performed in the DNA Engine Dyad Thermal Cycler (Bio-Rad, USA). Band visualization and data documentation were performed using the Gel-Doc XR gel documentation system (Bio-Rad, USA). Formalinized human erythrocytes of the type 0(I) Rh(+) and avian erythrocytes were used as cell substrates for the determination of bacterial adhesion to erythrocytes. To evaluate the bacterial adhesion properties the adhesion index was calculated as the average number of bacteria bound to an erythrocyte in the adhesion assay. The obtained results showed that the characterized strains possessed a high pathogenic potential, as they carried genes associated with APEC, ExPEC as well as IPEC. The presence of APEC-specific marker genes identified most of the strains as APEC. However, potential for human pathogenicity was also found among the analyzed strains. As the IPEC-associated genes were found more frequently than ExPEC-associated genes, the E. coli strains studied were more similar to strains causing acute intestinal infections in humans, particularly due to the fact that they carried genes encoding toxins characteristic of IPEC (with the exception of genes for Shiga-like toxins and enterohemolysins). Based on cluster analysis of genetic profiles, the strains studied could be classified into three groups: (i) pathogenic to birds and humans, characterized by the presence of 2-6 genes associated with APEC and 2-6 genes associated with ExPEC or IPEC (24 strains), (ii) pathogenic to birds and nonpathogenic to humans, characterized by the presence of 2-6 genes associated with APEC and 0-1 gene associated with ExPEC or IPEC (2 strains), and (iii) nonpathogenic, characterized by the possession of none or one gene from each pathotype, APEC, ExPEC, IPEC (2 strains). It was found that 75 % of the first group, pathogenic to birds and humans, carried not only a high number of virulence-associated genes, but also pathogenicity island SHI-2, as well as genes for extended-spectrum beta-lactamases and class 1 integrons. Specific adhesion of E. coli strains was more pronounced on chicken erythrocytes than on human ones. Statistical analysis revealed several positive correlations between the chicken and human erythrocytes adhesion profiles and a number of genes encoding adhesins. The high adhesion activity of the bacteria, regardless of the type of erythrocyte, also correlated with longer survival in host blood serum (genotype iss+) and the possibility of erythrocyte lysis (genotype hlyF+). The obtained data on the molecular and adhesive properties of causative agents of colibacillosis in birds allow us to assess their zoonotic potential and epizootic significance and can also serve as the basis for improving the monitoring system for colibacillosis in poultry farms. 

Keywords: avian pathogenic Escherichia coli, APEC, ExPEC, IPEC, virulence-associated genes, zoonotic potential.

 

REFERENCES

  1. Dho-Moulin M., Fairbrother J.M. Avian pathogenic Escherichia coli (APEC). Veterinary Research, 1999, 30(2-3): 299-316.
  2. Kunert Filho H.C., Brito K.C.T., Cavalli L.S., Brito B.G. Avian Pathogenic Escherichia coli (APEC) — an update on the control. In: The battle against microbial pathogens: basic science, technological advances and educational programs. A. Méndez-Vilas (eds.), Formatex Research Center, Spain, 2015.
  3. Nolan L.K., Barnes H.J., Vaillancourt J.P., Tahseen A., Logue C.M. Colibacillosis. In: Disease of Poultry, 13th Edition.  D.E. Swayne (eds.), John Wiley & Sons, Inc., USA, 2013.
  4. Solà-Ginés M., Cameron-Veas K., Badiola I., Dolz R., Majó N., Dahbi G., Viso S., Mora A., Blanco J., Piedra-Carrasco N., González-López J.J., Migura-Garcia L. Diversity of multi-drug resistant avian pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain, PLoS ONE, 2015, 10(11): e0143191 CrossRef
  5. Johnson T.J., Wannemuehler Y., Doetkott C., Johnson S.J., Rosenberger S.C., Nolan L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool Journal of Clinical Microbiology, 2008, 46(12): 3987-3996 CrossRef
  6. Dzhailidi G.A., Ponomarenko Yu.Yu., Lozaberidze A.E. Veterinariya Kubani, 2014, 2: 25-27 (in Russ.).
  7. Dziva F., Stevens M.P. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology, 2008, 37(4): 355-366 CrossRef
  8. Maturana V.G., de Pace F., Carlos C., Pires M.M., de Campos T.A., Nakazato G., Stheling E.G., Logue C.M., Nolan L.K., da Silveira W.D. Subpathotypes of avian pathogenic Escherichia coli (APEC) exist as defined by their syndromes and virulence traits. The Open Microbiology Journal, 2011, 5: 55-64 CrossRef
  9. Mageiros L., Méric G., Bayliss S.C., Pensar J., Pascoe B., Mourkas E., Calland J.K., Yahara K., Murray S., Wilkinson T.S., Williams L.K., Hitchings M.D., Porter J., Kemmett K., Feil E.J., Jolley K.A., Williams N.J., Corander J., Sheppard S.K. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nature Communication, 2021, 12(1): 765 CrossRef
  10. Johnson T.J., Siek K.E., Johnson S.J., Nolan L.K. DNA Sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. Journal of Bacteriology, 2006, 188: 745-758 CrossRef
  11. Manges A.R. Escherichia coli and urinary tract infections: the role of poultry-meat. Clinical Microbiology and Infection, 2016, 22(2): 122-129 CrossRef
  12. Vincent C., Boerlin V.P., Daignault D., Dozois C.M., Dutil L., Galanakis C., Reid-Smith R.J., Tellier P.P., Tellis P.A., Ziebell K., Manges A.R. Food reservoir for Escherichia coli causing urinary tract infections. Emerging Infectious Diseases, 2010, 16(1): 88-95 CrossRef
  13. Bergeron C., Prussing C., Boerlin P., Daignault D., Dutil L., Reid-Smith R.J., Zhanel G.G., Manges A.R. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerging Infectious Diseases, 2012, 18(3): 415-421 CrossRef
  14. Johnson T.J., Jordan D., Kariyawasam S., Stell A.L., Bell N.P., Wannemuehler Y.M., Alarcón C.F., Li G., Tivendale K.A., Logue K.M., Nolan L.K. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infection and Immunity, 2010, 78(5): 1931-1942 CrossRef
  15. Rodriguez-Siek K.E., Giddings C.W., Doetkott C., Johnson T.J., Fakhr M.K., Nolan L.K. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology, 2005, 151(6): 2097-2110 CrossRef
  16. Johnson T.J., Kariyawasam S., Wannemuehler Y., Mangiamele P., Johnson S.J., Doetkott C., Skyberg J.A., Lynne A.M., Johnson J.R., Nolan L.K.The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. Journal of Bacteriology, 2007, 189(8): 3228-3236 CrossRef
  17. Johnson T.J., Wannemuehler Y., Johnson S.J., Stell A.L., Doetkott C., Johnson J.R., Kim K.S., Spanjaard L., Nolan L.K. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Applied and Environmental Microbiology, 2008, 74(22): 7043-7050 CrossRef
  18. Santos A.C.M., Santos F.F., Silva R.M., Gomes T.A.T Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Frontiers in Cellular and Infection Microbiology, 2020, 10: 339 CrossRef
  19. Onishchenko G.G., Dyatlov I.A., Svetoch E.A., Volozhantsev N.V., Bannov V.A., Kartsev N.N., Borzenkov V.N., Fursova N.K., Shemyakin I.G., Bogun A.G., Kislichkina A.A., Popova A.V., Myakinina V.P., Teimurazov M.G., Polosenko O.V., Kaftyreva L.A., Makarova M.A., Matveeva Z.N., Grechaninova T.A., Grigor'eva N.S., Kicha E.V., Zabalueva G.V., Kutasova T.B., Korzhaev Yu.N., Bashketova N.S., Bushmanova O.N., Stalevskaya A.V., Chkhindzheriya I.G., Zhebrun A.B. Vestnik RAMN, 2015, 70(1): 70-81 (in Russ.).
  20. Bélanger L., Garenaux A., Harel J., Boulianne M., Nadeau E., Dozois C.M. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunology and Medical Microbiology, 2011, 62(1): 1-10 CrossRef
  21. Antao E.M., Ewers C., Gurlebeck D., Preisinger R., Homeier T., Li G., Wieler L.H. Signature-tagged mutagenesis in a chicken infection model leads to the identification of a novel avian pathogenic Escherichia coli fimbrial adhesion. PLoS One, 2009, 4(11): e7796 CrossRef
  22. Li G., Laturnus C., Ewers C., Wieler L.H. Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infection and Immunity, 2005, 73(5): 28182827 CrossRef
  23. Skyberg J.A., Johnson T.J., Johnson J.R., Clabots C., Logue C.M., Nolan L.K. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infection and Immunity, 2006, 74(11): 6287-6292 CrossRef
  24. Kuznetsova M.V., Gizatullina J.S., Nesterova L.Yu., Starčič Erjavec M. Escherichia coli isolated from cases of colibacillosis in Russian poultry farms (Perm krai): sensitivity to antibiotics and bacteriocins. Microorganisms, 2020, 8(5): 741 CrossRef
  25. Guiral E., Bosch J., Vila J., Soto S.M. Prevalence of Escherichia coli among samples collected from the genital tract in pregnant and nonpregnant women: relationship with virulence. FEMS Microbiology Letters, 2011, 314(2): 170-173 CrossRef
  26. Subedi M., Luitel H., Devkota B., Bhattarai R.K., Phuyal S., Panthi P., Shrestha A., Chaudhary D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Veterinary Research, 2018, 14: 113 CrossRef
  27. Johnson J.R., Stell A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. Journal of Infectious Disease, 2000, 181(1): 261-272 CrossRef
  28. Maslennikova I.L., Kuznetsova M.V., Toplak N., Nekrasova I.V., Žgur Bertok D., Starčič Erjavec M. Estimation of the bacteriocin ColE7 conjugation-based “kill”—“anti-kill” antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays. Letters in Applied Microbiology, 67(1): 47-53 CrossRef
  29. Moulin-Schouleur M., Répérant M., Laurent S., Brée A., Mignon-Grasteau S., Germon P., Rasschaert D., Schouler C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology, 2007, 45(10): 3366-3376 CrossRef
  30. Yamamoto S., Terai A., Yuri K., Kurazono H., Takeda Y., Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunology and Medical Microbiology, 1995, 12(2): 85-90 CrossRef
  31. Chapman T.A., Wu X.-Y., Barchia I., Bettelheim K.A., Driesen S., Trott D., Wilson M., Chin J.C.C Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Applied and Environmental Microbiology, 2006, 72(7): 4782-4795 CrossRef
  32. Orden J.A., Horcajo P., de la Fuente R., Ruiz-Santa-Quiteria J.A., Domínguez-Bernal G., Carrión J. Subtilase cytotoxin-coding genes in verotoxin-producing Escherichia coli strains from sheep and goats differ from those from cattle. Applied and Environmental Microbiology, 2011, 77(23): 8259-8264 CrossRef
  33. Kerényi M., Allison H.E., Bátai I., Sonnevend A., Emödy L., Plaveczky N., Páll T. Occurrence of hlyA and sheA genes in extraintestinal Escherichia coli strains. Journal of Clinical Microbiology, 1998, 43(6): 2965-2968 CrossRef
  34. O’Hara R.W., Jenks P.J., Emery M., Upton M. Rapid detection of extra-intestinal pathogenic Escherichia coli multi-locus sequence type 127 using a specific PCR assay. Journal of Medical Microbiology, 2019, 68(2): 188-196 CrossRef
  35. Nakano M., Yamamoto S., Terai A., Ogawa O., Makino S., Hayashi H., Nair G.B., Kurazono H. Structural and sequence diversity of the pathogenicity island of uropathogenic Escherichia coli which encodes the USP protein. FEMS Microbiology Letters, 2001, 205(1): 71-76 CrossRef
  36. Brilis V.I., Brilen T.A., Lentsner Kh.P. Laboratornoe delo, 1986: 210-212 (in Russ.).
  37. Zhao L., Gao S., Huan H., Xu X., Zhu X., Yang W., Gao Q., Liu X. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology, 2009, 155(5): 1634-1644 CrossRef
  38. Tivendale K.A., Logue C.M., Kariyawasam S., Jordan D., Hussein A., Li G., Wannemuehler Y., Nolan L.K. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infection and Immunity, 2010, 78(8): 3412-3419 CrossRef
  39. Johnson J.R., Murray A.C., Gajewski A., Sullivan M., Snippes P., Kuskowski M.A., Smith K.E. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrobial Agents and Chemotherapy, 2003, 47(7): 2161-2168 CrossRef
  40. Spurbeck R.R., Dinh Jr. P.C., Walk S.T., Stapleton A.E., Hooton T.M., Nolan L.K., Kim K.S., Johnson J.R., Mobley H.L.T. Isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary. Infection and Immunity, 2012, 80(12): 4115-4122 CrossRef
  41. Sarowska J., Futoma-Koloch B., Jama-Kmiecik A., Frej-Madrzak M., Ksiazczyk M., Bugla-Ploskonska G., Choroszy-Krol I.Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathogens, 2019, 11: 10 CrossRef
  42. Li T., Castañeda C.D., Arick M.A., Hsu C., Hsu C., Kiess A.S., Zhang L. Complete genome sequence of multidrug-resistant avian pathogenic Escherichia coli strain APEC-O2-MS1170. Journal of Global Antimicrobial Resistance, 2020, 23: 401-403 CrossRef
  43. Toval F., Schiller R., Meisen I., Putze J., Kouzel I.U., Zhang W., Karch H., Bielaszewska M., Mormann M., Müthing J., Dobrindt U. Characterization of urinary tract infection-associated shiga toxin-producing Escherichia coli. Infection and Immunity, 2014, 82(11): 4631-4642 CrossRef
  44. Dziva F., Hauser H., Connor T.R., van Diemen P.M., Prescott G., Langridge G.C., Eckert S., Chaudhuri R.R., Ewers C., Mellata M., Mukhopadhyay S., Curtiss R., Dougan G., Wieler L.H., Thomson N.R., Pickard D.J., Stevens M.P. Sequencing and functional annotation of avian pathogenic Escherichia coli serogroup O78 strains reveal the evolution of E. coli lineages pathogenic for poultry via distinct mechanisms. Infection and Immunity, 2013, 81(3): 838-849 CrossRef
  45. Bulgakova N.F. Veterinariya. Referativnyi zhurnal, 2007, 3: 759 (in Russ.).
  46. Tsutsuki H., Ogura K., Moss J., Yahiro K. Host response to the subtilase cytotoxin produced by locus of enterocyte effacement-negative shiga-toxigenic Escherichia coli. Microbiology and Immunology, 2020, 64(10): 657-665 CrossRef
  47. Naderi G., Haghi F., Zeighami H., Hemati F., Masoumian N. Distribution of pathogenicity island (PAI) markers and phylogenetic groups in diarrheagenic and commensal Escherichia coli from young children. Gastroenterol Hepatol Bed Bench, 2016, 9(4): 316-324.
  48. Yoon S.H., Park Y., Kim J.F. PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Research, 2015, 43(D1): D624-D630‎ CrossRef
  49. Johnson T.J., Nolan L.K. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiology and Molecular Biology Reviews, 2009, 73(4): 750-774 CrossRef
  50. Thomas W.E., Trintchina E., ForeroM., Vogel V., Sokurenko E.V. Bacterial adhesion to target cells enhanced by shear force.Cell, 2002, 109(7): 913-923 CrossRef
  51. Le Bouguénec C., Servin A.L. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens. FEMS Microbiology Letters, 2006, 256: 185-194 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)