PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.2.283eng

UDC: 638.123:577.2

Acknowledgements:
Supported by the Tomsk State University competitiveness improvement program

 

SOME PROBLEMS OF IDENTIFICATION OF HONEYBEE SUBSPECIES AND THEIR SOLUTION ON THE EXAMPLE OF STUDYING THE Apis mellifera IN SIBERIA

N.V. Ostroverkhova1, 2, O.L. Konusova1

1Institute of Biology, National Research Tomsk State University, 36, prospect Lenina, Tomsk, 634050 Russia, е-mail nvostrov@mail.ru (✉ corresponding author), olga.konusova@mail.ru;
2Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634055 Russia

ORCID:
Ostroverkhova N.V. orcid.org/0000-0001-9837-4905
Konusova O.L. orcid.org/0000-0002-2140-9222

July 7, 2021

 

Studies of the honeybee Apis mellifera L. are carried out by both classical morphometric and molecular methods, including whole genome sequencing. Morphometric analysis has revealed thirty subspecies of A. mellifera for four evolutionary lineages that corresponded to their geographical origin. mtDNA analysis, e.g., for the variability of COI-COII locus (the sequence between the cytochrome oxidase I and cytochrome oxidase II genes), has identified three major evolutionary lineages, A, M, and C. However, this method has a limitation associated with maternal inheritance of the mitochondrial genome. The honeybee does not have sex chromosomes, so information about inheritance in the paternal line (as well as in the maternal line) can only be obtained from the analysis of autosomal loci, such as SNP (single nucleotide polymorphism) and SSR (simple sequence repeats) markers. The present work, for the first time, evaluates the informativity of morphometric and molecular methods for the identification of A. mellifera subspecies inhabiting Siberian apiaries. We have shown that the analysis of the variability of the main parameters of the wing (cubital index, hantel index, and discoidal shift) and the mtDNA COI-COII locus accurately detect the origin of the bee colony. We also studied for the first time the genetic diversity of the A. mellifera mellifera Siberian populations for microsatellite loci. Diagnostic alleles specific for subspecies and ecotypes of the honeybees have been identified to differentiate the A. m. mellifera subspecies and its ecotypes, as well as subspecies of southern origin (Carpathian bee, Carnica). This work aimed to evaluate prospects for morphometric and molecular analysis methods in differentiation of A. mellifera subspecies reared in Siberia. Honeybees from 92 apiaries in 69 settlements located in five regions of Siberia (Tomsk and Kemerovo regions, Krasnoyarsk Territory, Altai Territory, and the Altai Republic) were studied. The first stage was the investigation of worker bees from 414 bee colonies using the morphometric method and analysis of the mtDNA COI-COII locus variability. The second stage was the identification of the A. m. mellifera colonies based on a complex of SSR markers. We examined the variability of 31 microsatellite loci. To search for unique or specific SSR markers for different honeybee subspecies, we also examined the genetic diversity of two southern subspecies, A. m. carpathica and A. m. carnica (a comparison group). Population genetic parameters (allele frequency, observed and expected heterozygosity Ho and He) were calculated using GenAlEx 6.5 software (https://biology-assets.anu.edu.au/GenAlEx/). Introgression of the genes of the evolutionary lineage C into the lineage M was assessed based on the microsatellite loci polymorphism data using the STRUCTURE 2.3.4 program (https://web.stanford.edu/group/pritchardlab/home.html). It is shown that three wing parameters, i.e., cubital index, hantel index, and discoidal shift, together with mtDNA polymorphism analysis  data, are necessary and sufficient for differentiation of A. mellifera subspecies. The discoidal shift parameter is one of the first morphometric trait to deviate from the breed standard values in the honeybee hybridization. Microsatellite analysis revealed loci that differentiate both subspecies of different evolutionary lineages (M and C) and different A. m. mellifera ecotypes. Loci A043, Ap081, Ap049, AT139, A113, mrjp3, etc. can be considered as diagnostic (subspecies-specific) loci the composition and frequency of the prevailing alleles of which differ in A. m. mellifera subspecies (lineage M) and two subspecies of southern origin (A. m. carpathica and A. m. carnica, lineage C). In A. m. mellifera honeybees, alleles 128 bp at the A043 locus, 124 bp at the Ap081 locus, 127 bp at the Ap049 locus, 190 bp at the AT139 locus, 218 bp at the A113 locus, and 529 bp at the mrjp3 occur in high frequency (0.54-0.99). In honeybees of southern origin (A. m. carpathica and A. m. carnica), these alleles are rarer (0.01-0.27). The microsatellite locus A008 is the most promising molecular marker to differentiate A. m. mellifera ecotypes from Siberia, the Urals and Europe (eco-specific locus). Based on the genetic diversity of Siberian honeybees for microsatellite loci, a diagnostic panel of molecular markers has been developed to differentiate subspecies and ecotypes of honeybees belonging to the evolutionary M and C lineages (A. m. mellifera, A. m. carpathica, and A. m. carnica).

Keywords: honeybee, Apis mellifera, morphometric signs, molecular genetic methods, mtDNA, microsatellite loci, COI-COII, DNA markers, Siberia.

 

REFERENCES

  1. Bouga M., Alaux C., Bienkowska M., Büchler R., Carreck N.L., Cauia E., Chlebo R., Dahle B., Dall'Olio R., De la Rúa P., Gregorc A., Ivanova E., Kence A., Kence M., Kezic N., Kiprijanovska H., Kozmus P., Kryger P., Le Conte Y., Lodesani M., Murilhas A.M., Siceanu A., Soland G., Uzunov A., Wilde J. A review of methods for discrimination of honey bee populations as applied to European beekeeping. Journal of Apicultural Research,2011, 50(1): 51-84 CrossRef
  2. Nawrocka A., Kandemir İ., Fuchs S., Tofilski A. Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie, 2018, 49: 172-184 CrossRef
  3. Pinto M.A., Henriques D., Chávez-Galarza J., Kryger P., Garnery L., van der Zee R., Dahle B., Soland-Reckeweg G., De la Rúa P., Dall'Olio R., Carreck N.L., Johnston J.S. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera)from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. Journal of Apicultural Research,2014, 53(2): 269-278 CrossRef
  4. Muñoz I., Henriques D., Johnston J.S., Chávez-Galarza J., Kryger P., Pinto M.A. Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera). PLoS ONE, 2015, 10(4): e0124365 CrossRef
  5. Parejo M., Henriques D., Pinto M.A., Soland-Reckeweg G., Neuditschko M. Empirical comparison of microsatellite and SNP markers to estimate introgression in Apis mellifera mellifera. Journal of Apicultural Research, 2018, 57(4): 504-506 CrossRef
  6. Henriques D., Chávez-Galarza J.C., Quaresma A., Neves C.J., Lopes A.R., Costa C., Costa F.O., Rufino J., Pinto M.A. From the popular tRNAleu-COX2 intergenic region to the mitogenome: insights from diverse honey bee populations of Europe and North Africa. Apidologie, 2019, 50(2): 215-229 CrossRef
  7. Meixner M.D., Pinto M.A., Bouga M., Kryger P., Ivanova E., Fuchs S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research, 2013, 52(4): 1-28 CrossRef
  8. Porrini L.P., Quintana S., Brasesco C., Porrini M.P., Garrido P.M., Eguaras M.J., Müller F., Iriarte P.F. Southern limit of Africanized honey bees in Argentina inferred by mtDNA and wing geometric morphometric analysis. Journal of Apicultural Research, 2020, 59(4): 648-657 CrossRef
  9. Alpatov V.V. Porody medonosnoi pchely [Honeybee breeds]. Moscow, 1948 (in Russ.).
  10. Ruttner F. Biogeography and taxonomy of honey bees. Berlin, Germany, 1988.
  11. Franck P., Garnery L., Solignac M., Cornuet J.-M. Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 2000, 31(2): 167-180 CrossRef
  12. Garnery L., Cornuet J.M., Solignac M.Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Molecular Ecology, 1992, 1(3): 145-154 CrossRef
  13. Cornuet J.M., Garnery L., Solignac M. Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics, 1991, 128(2): 393-403 CrossRef
  14. Rortais A., Arnold G., Alburaki M., Legout H., Garnery L. Review of the DraI COI-COII test for the conservation of the black honeybee (Apis mellifera mellifera). Conservation Genetics Resources, 2011, 3(2): 383-391 CrossRef
  15. Dall’Olio R., Marino A., Lodesani M., Moritz R.F.A. Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie, 2007, 38(2): 207-217 CrossRef
  16. Cánovas F., de la Rúa P., Serrano J., Galián J.Microsatellite variability reveals beekeeping influences on Iberian honeybee populations. Apidologie, 2011, 42(3): 235-251 CrossRef
  17. Ostroverkhova N.V., Kucher A.N., Konusova O.L., Kireeva T.N., Sharakhov I.V. Genetic diversity of honeybees in different geographical regions of Siberia. International Journal of Environmental Studies, 2017, 74(5): 771-781 (doi: 10.1080/00207233.2017.1283945">CrossRef
  18. Soland-Reckeweg G., Heckel G., Neumann P., Fluri P., Excoffier L. Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera. Journal of Insect Conservation, 2009, 13: 317-328 CrossRef
  19. Oleksa A., Chybicki I., Tofilski A., Burczyk J. Nuclear and mitochondrial patterns of introgression into native dark bees (Apis mellifera mellifera) in Poland. Journal of Apicultural Research, 2011, 50(2): 116-129 CrossRef
  20. Nikolova S. Genetic variability of local Bulgarian honey bees Apis mellifera macedonica (rodopica) based on microsatellite DNA analysis. Journal of Apicultural Science, 2011, 55(2): 117-129.
  21. Il'yasov R.A., Poskryakov A.V., Petukhov A.V., Nikolenko A.G. Genetika, 2016, 52(8): 931-942 CrossRef (in Russ.).
  22. Zinov'eva N.A., Krivtsov N.I., Fornara M.S., Gladyr' E.A., Borodachev A.V., Berezin A.S., Lebedev V.I. Microsatellites as a tool for evaluation of allele pool dynamics when creation of prioksky type of middle russian honey bee Apis mellifera. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 75-79 (in Russ.).
  23. Krivtsov N.I., Zinov'eva N.A., Borodachev A.V., Lebedev V.I., Fornara M.S. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta imeni P.A. Kostycheva, 2011, 4(12): 23-27 (in Russ.).
  24. Hassett J., Browne K.A., McCormack G.P., Moore E., Native Irish Honey Bee Society, Soland G., Geary M. A significant pure population of the dark European honey bee (Apis mellifera mellifera) remains in Ireland. Journal of Apicultural Research, 2018, 57(3): 337-350 CrossRef
  25. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science, 2006, 314(5799): 642-645 CrossRef
  26. Ostroverkhova N.V., Rosseikina S.A., Konusova O.L., Kucher A.N., Kireeva T.N. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2019, 47: 142-173 CrossRef (in Russ.).
  27. Konusova O.L., Ostroverkhova N.V., Kucher A.N., Kurbatskii D.V., Kireeva T.N. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2016, 1(33): 62-81 CrossRef (in Russ.).
  28. Căuia E., Usurelu D., Magdalena L.M., Cimponeriu D., Apostol P., Siceanu A., Holban A., Gavrilă L. Preliminary researches regarding the genetic and morphometric characterization of honeybee (A. mellifera L.) from Romania. Scientific Papers Animal Science and Biotechnologies, 2008, 41(2): 278-286.
  29. Nikonorov Yu.M., Ben'kovskaya G.V., Poskryakov A.V., Nikolenko A.G., Vakhitov V.A. Genetika, 1998, 34(11): 1574-1577 (in Russ.).
  30. Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E., Estoup A., Garnery L., Haberl M., Cornuet J.-M. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Molecular Ecology Notes, 2003, 3(2): 307-311 CrossRef 
  31. Baitala T.V., Faquinello P., de Toledo V.d.A.A., Mangolin C.A., Martins E.N., Ruvolo-Takasusuki M.C.C. Potential use of major royal jelly proteins (MRJPs) as molecular markers for royal jelly production in Africanized honeybee colonies. Apidologie, 2010, 41: 160-168 CrossRef
  32. Albert S., Klaudiny J., Šimúth J. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly. Insect Biochemistry and Molecular Biology, 1999, 29(5): 427-434 CrossRef
  33. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics, 2012, 28(19): 2537-2539 CrossRef
  34. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959 CrossRef
  35. Ostroverkhova N.V., Konusova O.L., Kucher A.N., Kireeva T.N., Vorotov A.A., Belykh E.A. Genetika, 2015, 51(1): 89-100 CrossRef (in Russ.).
  36. Kandemir İ., Özkan A., Fuchs S. Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach. Apidologie, 2011, 42(5): 618-627 CrossRef
  37. Özkan A.K., Kandemir İ. Comparison of two morphometric methods for discriminating honey bee (Apis mellifera L.) populations in Turkey. Turkish Journal of Zoology, 2013, 37(2): 205-210 CrossRef
  38. Klingenberg C.P. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 2011, 11(2): 353-357 CrossRef
  39. Charistos L., Hatjina F., Bouga M., Mladenovic M., Maistros A.D. Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape. Journal of Apicultural Science, 2014, 58(1): 75-84 CrossRef
  40. Francoy T.M., Prado P.R.R., Gonçalves L.S., Costa L.F., De Jong D. Morphometric differences in a single wing cell can discriminate Apis mellifera racial types. Apidologie, 2006, 37(1): 91-97 CrossRef
  41. Lyuto A.A., Ivanova O.V., Tolstopyatov L.P. Pchelovodstvo, 2015, 9: 21-22 (in Russ.).
  42. Brandorf A.Z., Ivoilova M.M. Biomika, 2016, 8(2): 73-75 (in Russ.).
  43. Guzmín-Novoa E., Page R.E.Jr., Fondrk M.K. Morphometric techniques do not detect intermediate and low levels of Africanization in honey bee (Hymenoptera: Apidae) colonies. Annals of the Entomological Society of America, 1994, 87(5): 507-515 CrossRef
  44. De la Rúa P., Jaffé R., Dall’Olio R., Muñoz I., Serrano J. Biodiversity, conservation and current threats to European honeybees. Apidologie, 2009, 40: 263-284 CrossRef
  45. Meixner M.D., Büchler R., Costa C., Francis R.M., Hatjina F., Kryger P., Uzunov A., Carreck N.L. Honey bee genotypes and the environment. Journal of Apicultural Research, 2014, 53(2): 183-187 CrossRef
  46. Hatjina F., Costa C., Büchler R., Uzunov A., Drazic M., Filipi J., Charistos L., Ruottinen L., Andonov S., Meixner M.D., Bienkowska M., Dariusz G., Panasiuk B., Le Conte Y., Wilde J., Berg S., Bouga M., Dyrba W., Kiprijanovska H., Korpela S., Kryger P., Lodesani M., Pechhacker H., Petrov P., Kezic N. Population dynamics of European honey bee genotypes under different environmental conditions. Journal of Apicultural Research, 2014, 53(2): 233-247 CrossRef
  47. Gokhman V.E. Zhurnal obshchei biologii, 2017, 78(5): 37-45 (in Russ.).
  48. Bannikova A.A. Zhurnal obshchei biologii, 2004, 65(4): 278-305 (in Russ.).
  49. Abramson N.I. Trudy Zoologicheskogo instituta RAN,2009, 1: 185-198 (in Russ.).
  50. Tarasov O.V., Zhuravleva G.A., Abramson N.I. Molekulyarnaya biologiya, 2008, 42(6): 937-946 (in Russ.).
  51. Vinarskii M.V. Zhurnal obshchei biologii, 2015, 76(2): 99-110 (in Russ.).
  52. Sinev S.Yu. Entomologicheskoe obozrenie, 2011, XC(4): 821-832 (in Russ.).
  53. Lukhtanov V.A, Shapoval N.A. Doklady Akademii nauk, 2008, 423(3): 421-426 (in Russ.).
  54. Wiens J.J., Kuczynski C.A., Townsend T., Reeder T.W., Mulcahy D.G., Sites J.W.Jr. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology, 2010, 59(6): 674-688 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)