PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.2.207eng

UDC: 636.4:619:578:616-097:57.083.3

Supported financially from the Russian Foundation for Basic Research (grant No. 20-76-10030)

 

IMMUNOBIOLOGICAL AND MOLECULAR GENETIC PROPERTIES OF NON-HEMADSORBING AFRICAN SWINE FEVER VIRUS STRAINS (review)

S.A. Krutko, S.G. Namsrayn, A.D. Sereda

Federal Research Center for Virology and Microbiology, 1, ul. Akademika Bakuleva, pos. Vol’ginskii, Petushinskii Region, Vladimir Province, 601125 Russia, e-mail sergejjkrutko@gmail.com, namsrayn.szh@gmail.com, sereda-56@mail.ru ( corresponding author)

ORCID:
Krutko S.A. orcid.org/0000-0002-5627-7696
Sereda A.D. orcid.org/0000-0001-8300-5234
Namsrayn S.G. orcid.org/0000-0003-1116-090X

November 22, 2021

 

African swine fever virus (ASF, Asfivirus, Asfarviridae) is the most serious problem for the swine industry worldwide. The proposed review presents the results of the study of non-hemadsorbing strains of the African swine fever virus (ASF, African swine fever virus). According to published data, most of the non-hemadsorbing strains of the ASF virus isolated in nature or obtained in laboratory conditions are weak or avirulent and have the property of forming immunological protection against homologous virulent hemadsorbing isolates or strains in subsequent infection of pigs (J.D. Vigário et al., 1970). On the African continent, avirulent non-hemadsorbent strains of ASF virus were usually isolated from persistently infected warthogs (Phacochoerus spp.), bush pigs (Potomochorus porcus) and soft mites Ornithodoros moubata (A. Pini, 1976; G.R. Thomson et al., 1979). In Europe (Portugal, Spain) and Asia (China) – from persistently infected domestic pigs (Sus scrofa domesticus), wild boars (Sus scrofa) and from Ornithodoros erraticus (marocanus) ticks (F.S. Boinas et al., 2004; C. Gallardo et al., 2019; Sun E. et al., 2021). The review focuses on the use of non-hemadsorbing strains in order to study immunological mechanisms of protection against ASF. In experiments with the OURT88/3 strain, CD8+ T-cells were shown to have an important role in immunological protection against ASF. The cross-protection induced by the OURT88/3 strain against infection with virulent isolates of unrelated genotypes correlated with the ability of these isolates to specifically stimulate the production of IFNγ by lymphocytes of the immunized pigs (C.C. Abrams et al., 2013). Experiments with the non-hemadsorbing strain NH/P68 demonstrated that a high levels of specific antibodies to the ASF virus is characteristic to the chronic form of the disease, while low levels of antibodies were noted in asymptomatic pigs after intranasal and intramuscular immunization (A. Leitão et al., 2001; C. Gallardo et al., 2019). The low pathogenicity of non-hemadsorbing isolates is associated with the loss of virulence factors due to large deletions close to the left end of the genome or smaller deletions and substitutions in genes encoding virulence factors elsewhere in the genome (F.S. Boinas et al., 2004). The loss of the hemadsorbing properties of the ASF virus is associated with deletions and/or a shift in the reading frame in the EP402R gene (R.J. Rowlands et al., 2009; R. Portugal et al., 2015; K.A. Mima et al., 2015). In terms of possible practical application of non-hemadsorbing strains this paper presents results on reducing adverse clinical reactions in pigs inoculated with deletion mutants of strains OURT88/3 and NH/P68 (M.L. Nogal et al., 2001; C. Hurtado et al., 2004; A.G. Granja et al., 2009). Naturally attenuated non-hemadsorbent strains of the ASF virus are used in research focused on the creation of candidate live vaccines. In experiments conducted with their use, up to a 100 % protection against homologous virulent isolates and strains of ASF virus was obtained in domestic pigs (K. King et al., 2011; P.J. Sánchez-Cordón et al., 2017; C. Gallardo et al., 2018; C. Gallardo et al., 2019; P.J. Sanchez-Cordon et al., 2020) and wild boars (J.A. Barasona et al., 2019).

Keywords: African swine fever, non-hemadsorbing isolates, non-hemadsorbing strains, candidate vaccines.

 

REFERENCES

  1. Arias M., De la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., Martins C., Parkhouse R.M., Revilla Y., Rodriguez F., Sanchez-Vizcaino J.M. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines, 2017, 5(4): 35 CrossRef
  2. Forman A.J., Wardley R.C., Wilkinson P.J. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Archives of Virology, 1982, 74(2-3): 91-100 CrossRef
  3. Stone S.S., Hess W.R. Antibody response to inactivated preparations of African swine fever virus in pigs. American Journal of Veterinary Research, 1967, 28(123): 475-481.
  4. Rock D.L. Challenges for African swine fever vaccine development—«... perhaps the end of the beginning». Veterinary Microbiology, 2017, 206: 52-58 CrossRef
  5. Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32(31): 3879-3882 CrossRef
  6. OIE (World Organization for Animal Health). Animal diseases. Available: https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-diseases/. No date.
  7. Alonso C., Borca M., Dixon L., Revilla Y., Rodriguez F., Escribano J.M. Ictv report consortium. ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology, 2018, 99(5): 613-614 CrossRef
  8. Galindo I., Alonso C. African swine fever virus: a review. Viruses, 2017, 9(5): 103 CrossRef
  9. Sánchez-Vizcaíno J.M., Mur L., Martínez-López B. African swine fever: an epidemiological update. Transboundary and Emerging Disease, 2012, 59(S1): 27-35 CrossRef
  10. Global African Swine Fever Research Alliance (GARA). African Swine Fever. Gap Analysis Report. 2018. Available: https://go.usa.gov/xPfWr. No date.
  11. Sereda A.D., Balyshev V.M., Kazakova A.S., Imatdinov A.R., Kolbasov D.V. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I-VIII. Pathogens, 2020, 9(4): 274 CrossRef
  12. Malogolovkin A., Kolbasov D. Genetic and antigenic diversity of African swine fever virus. Virus Research, 2019, 271: 197673 CrossRef
  13. Sereda A.D., Imatdinov A.R., Makarov V.V. The haemadsorbation at African swine fever (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2016, 51(6): 763-774 CrossRef
  14. Quembo C.J., Jori F., Vosloo W., Heath L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Disease, 2018, 65(2): 420-431 CrossRef
  15. Achenbach J.E., Gallardo C., Nieto-Pelegrín E., Rivera-Arroyo B., Degefa-Negi T., Arias M., Jenberie S., Mulisa D.D., Gizaw D., Gelaye E., Chibssa T.R., Belaye A., Loitsch A., Forsa M., Yami M., Diallo A., Soler A., Lamien C.E., Sánchez-Vizcaíno J.M. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transboundary and Emerging Disease, 2017, 64(5): 1393-1404 CrossRef
  16. Muangkram Y., Sukmak M., Wajjwalku W. Phylogeographic analysis of African swine fever virus based on the p72 gene sequence. Genetics and Molecular Research, 2015, 14(2): 4566-4574 CrossRef
  17. Gao L., Sun X., Yang H., Xu Q., Li J., Kang J., Liu P., Zhang Y., Wang Y., Huang B. Epidemic situation and control measures of African Swine Fever Outbreaks in China 2018-2020. Transboundary and Emerging Disease, 2021, 68(5): 2676-2686 CrossRef
  18. Revilla Y., Pérez-Núñez D., Richt J.A. Chapter Three - African swine fever virus biology and vaccine approaches. Advances in Virus Research, 2018, 100: 41-74 CrossRef
  19. Cisek AA., Dąbrowska I., Gregorczyk K.P., Wyżewski Z. African swine fever virus: a new old enemy of Europe. Annals of Parasitology, 2016, 62(3): 161-167 CrossRef
  20. Sánchez-Vizcaíno J.M., Mur L., Gomez-Villamandos J.C., Carrasco L. An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 2015, 152(1): 9-21 CrossRef
  21. Rowlands R.J., Michaud V., Heath L., Hutchings G., Oura C., Vosloo W., Dwarka R., Onashvili T., Albina E., Dixon L.K. African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases, 2008, 14(12): 1870-1874 CrossRef
  22. Sánchez-Vizcaíno J.M., Mur L., Martínez-Lópeza B. African swine fever (ASF): five years around Europe. Veterinary Microbiology, 2013, 165(1-2): 45-50 CrossRef
  23. Beltran-Alcrudo D., Lubroth J., Depner K., Rocque, La S.D., Beltran-Alcrudo D., Lubroth J., De La Rocque S. African swine fever in the Caucasus. FAO, EmpresWatch, 2008.
  24. Gogin A., Gerasimov V., Malogolovkin A., Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Research, 2013, 173(1): 198-203 CrossRef
  25. Korennoy F.I., Gulenkin V.M., Gogin A.E., Vergne T., Karaulov A.K. Estimating the basic reproductive number for African swine fever using the Ukrainian historical epidemic of 1977. Transboundary and Emerging Disease, 2017, 64(6): 1858-1866 CrossRef
  26. Malogolovkin A., Yelsukova A., Gallardo C., Tsybanov S., Kolbasov D. Molecular characterization of African swine fever virus isolates originating from outbreaks in the Russian Federation between 2007 and 2011. Veterinary Microbiology, 2012, 58(3-4): 415-9 CrossRef
  27. Zhao D., Liu R., Zhang X., Li F., Wang J., Zhang J., Liu X., Wang L., Zhang J., Wu X., Guan Y., Chen W., Wang X., He X., Bu Z. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes and Infections, 2019, 8(1): 438-447 CrossRef
  28. Tran H.T.T., Truong A.D., Dang A.K., Ly D.V., Nguyen C.T., Chu N.T., Hoang T.V., Nguyen H.T., Dang H.V. Circulation of two different variants of intergenic region (IGR) located between the I73R and I329L genes of African swine fever virus strains in Vietnam. Transboundary and Emerging Disease, 2021, 68(5): 2693-2695 CrossRef
  29. Wen X., He X., Zhang X., Zhang X., Liu L., Guan Y., Zhang Y., Bu Z. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerging Microbes and Infections, 2019, 8(1): 303-306 CrossRef
  30. Sun E., Zhang Z., Wang Z., He X., Zhang X., Wang L., Wang W., Huang L., Xi F., Huangfu H., Tsegay G., Huo H., Sun J., Tian Z., Xia W., Yu X., Li F., Liu R., Guan Y., Zhao D., Bu Z. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci., 2021, 64(5): 752-765 CrossRef
  31. Sun E., Huang L., Zhang X., Zhang J., Shen D., Zhang Z., Wang Z., Huo H., Wang W., Huangfu H., Wang W., Li F., Liu R., Sun J., Tian Z., Xia W., Guan Y., He X., Zhu Y., Zhao D., Bu Z. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes and Infections, 2021, 10(1): 1-30 CrossRef
  32. Coggins L. Segregation of a nonhaemadsorbing African swine fever virus in tissue culture. Cornell Veterinarian, 1968, 58: 12-20.
  33. Jori F., Bastos A.D. Role of wild suids in the epidemiology of African swine fever. EcoHealth, 2009, 6(2): 296-310 CrossRef
  34. Ravaomanana J., Michaud V., Jori F., Andriatsimahavandy A., Roger F., Albina E., Vial L. First detection of African Swine Fever Virus in Ornithodoros porcinus in Madagascar and new insights into tick distribution and taxonomy. Parasites Vectors,2010, 3: 115 CrossRef
  35. Pan I.C., Hess W.R. Diversity of African swine fever virus. American Journal of Veterinary Research, 1985, 46(2): 314-320.
  36. Pan I.C. African swine fever virus: generation of subpopulations with altered immunogenicity and virulence following passage in cell cultures. The Journal of Veterinary Medical Science, 1992, 54(1): 43-52 CrossRef
  37. Vigário J.D., Terrinha A.M., Bastos A.L., Moura-Nunes J.F., Marques D., Silva J.F. Serological behaviour of isolated African swine fever virus. Brief report. Archiv für die Gesamte Virusforschung, 1970, 31(3): 387-389 CrossRef
  38. Pini A. Isolation and segregation of non-haemadsorbing strains of African swine fever virus. Veterinary Record, 1976, 99(24): 479-480 CrossRef
  39. Pini A., Wagenaar G. Isolation of a non-haemadsorbing strain of African swine fever (ASF) virus from a natural outbreak of the disease. Veterinary Record, 1974, 94(1): 2 CrossRef
  40. Thomson G.R., Gainaru M.D., van Dellen A. F. African swine fever: pathogenicity and immunogenicity of two non-haemadsorbing viruses. The Onderstepoort Journal of Veterinary Research, 1979, 46(3): 149-154.
  41. Commission of the European Communities. Laboratory manual for research on classical and African swine fever. The Commission, Luxembourg, 1976: 111-112.
  42. Makarov V., Nedosekov V., Sereda A., Matvienko N. Immunological conception of African swine fever. Zoology and Ecology, 2016, 26(3): 236-243 CrossRef
  43. Louzã A.C., Boinas F.S., Caiado J.M., Vigario J.D., Hess W.R. Role des vecteurs et des reservoirs animaux dans la persistence de la peste porcine africaine, au Portugal. Epidemiologie et Sante Animale, 1989, 15: 89-102 (in French).
  44. Vigário J.D., Terrinha A.M., Moura Nunes J.F. Antigenic relationships among strains of African swine fever virus. Archiv für die Gesamte Virusforschung, 1974, 45(3): 272-277 CrossRef
  45. Manso-Ribeiro J., Nunes-Petisca J.L., Lopez-Frazao F., Sobral M. Vaccination against ASF. Bull. Off. Int. Epiz., 1963, 60: 921-937.
  46. Petuska N. Quelques aspects morphogenesis des suites de la vaccination contre la PPA (virose L) an Portugal. Bull. Off. Int. Epiz., 1965, 63: 199-237.
  47. Sanchez Botija C., Ordaz A., Solana A., Gonzalvo F., Olias J. Carnero M.E. Peste Porcina Africana: observaciones sobre modificacion espontanea del virus de campo. An. Inst. Invest. Vet., 1977, 24: 7-17 (in Spanish">CrossRef
  48. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R., Portugal F.C., Vigário J.D., Martins C. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. The Journal of General Virology, 2001, 82(3): 513-523 CrossRef
  49. Boinas F.S., Hutchings G.H., Dixon L.K., Wilkinson P.J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. Journal of General Virology, 2004, 85(8): 2177-2187 CrossRef
  50. Rowlands R.J., Duarte M.M., Boinas F., Hutchings G., Dixon L.K. The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology, 2009, 393(2): 319-328 CrossRef
  51. Dixon L.K., Twigg S.R., Baylis S.A., Vydelingum S., Bristow C., Hammond J.M., Smith G.L. Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). The Journal of General Virology, 1994, 75(7): 1655-1684 CrossRef
  52. Sumption K.J., Hutchings G.H., Wilkinson P.J., Dixon L.K. Variable regions on the genome of Malawi isolates of African swine fever virus. The Journal of General Virology, 1990, 71(10): 2331-2340 CrossRef
  53. Yáñez R.J., Rodríguez J.M., Nogal M.L., Yuste L., Enríquez C., Rodriguez J.F., Viñuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology, 1995, 208(1): 249-278 CrossRef
  54. Sánchez-Cordón P.J., Chapman D., Jabbar T., Reis A.L., Goatley L., Netherton C.L., Taylor G., Montoya M., Dixon L. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antiviral Reserch, 2017, 138: 1-8 CrossRef
  55. Gallardo C., Nieto R., Soler A., Pelayo V., Fernández-Pinero J., Markowska-Daniel I., Pridotkas G., Nurmoja I., Granta R., Simón A., Pérez C., Martín E., Fernández-Pacheco P., Arias M. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in eastern european union countries: How To Improve surveillance and control programs. Journal of Clinical Microbiology, 2015, 53(8): 2555-2565 CrossRef
  56. Oura C., Denyer M.S., Takamatsu H., Parkhouse R. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. The Journal of General Virology, 2005, 86(9): 2445-2450 CrossRef
  57. King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A., Netherton C.L., Moffat K., Taylor G., Le Potier M.F., Dixon L.K., Takamatsu H. H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29(28): 4593-4600 CrossRef
  58. Rudobel'skii E.V. Tezisy doklladov nauchnoi konferentsii VNIIVViM, posvyashchennoi 70-letiyu Velikogo Oktyabrya [Proc. Scientific conference VNIIVViM dedicated to the 70th anniversary of the Great October Revolution]. Pokrov, 1988: 80-81 (in Russ.).
  59. Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., Arias M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404 CrossRef
  60. Detray D.E. Persistence of viremia and immunity in African swine fever. American Journal of Veterinary Research, 1957, 18(69): 811-816.
  61. Malmquist W.A. Serologic and immunologic studies with African swine fever virus. American Journal of Veterinary Research, 1963, 24: 450-459.
  62. Mebus C.A., Dardiri A.H. Western hemisphere isolates of African swine fever virus: asymptomatic carriers and resistance to challenge inoculation. American Journal of Veterinary Research, 1980, 41(11): 1867-1869.
  63. Sereda A.D., Kazakova A.S., Imatdinov A.R., Kolbasov D.V. Humoral and cell immune mechanisms under African swine fever. Agricultural Biology, 2015, 50(6): 709-718 CrossRef
  64. Wardley R.C., Norley S.G., Wilkinson P.J., Williams S. The role of antibody in protection against African swine fever virus. Veterinary Immunology and Immunopathology, 1985, 9(3): 201-212 CrossRef
  65. Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 1994, 198(1): 350-354 CrossRef
  66. Ruiz-Gonzalvo F., Carnero M.E., Bruyel V. Immunological responses of pigs to partially attenuated African swine fever virus and their resistance to virulent homologous and heterologous viruses. Proc. EUR 8466 EN CEC/FAO Research Seminar «African Swine Fever», Sardinia, Italy. P.J. Wilkinson (ed.). Luxemburg, Belgium, Commission of the European Communities, 1981: 206-216.
  67. Sereda A.D., Solovkin S.L., Fugina L.G., Makarov V.V. Voprosy virusologii, 1992, 37(3): 168-170 (in Russ.">CrossRef
  68. Sánchez-Cordón P.J., Jabbar T., Chapman D., Dixon L.K., Montoya M. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninΔMFG correlates with increased levels of regulatory T cells and IL-10. Journal of Virology, 2020, 94(14), e00350-20 CrossRef
  69. Abrams C.C., Goatley L., Fishbourne E., Chapman D., Cooke L., Oura C.A., Netherton C.L., Takamatsu H.H., Dixon L.K. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virology, 2013, 443(1): 99-105 CrossRef
  70. Norley S.G., Wardley R.C. Investigation of porcine natural-killer cell activity with reference to African swine-fever virus infection. Immunology, 1983, 49(4): 593-597.
  71. Mendoza C., Videgain S.P., Alonso F. Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science, 1991, 51(3): 317-321 CrossRef
  72. Gallardo C., Sánchez E.G., Pérez-Núñez D., Nogal M., de León P., Carrascosa Á.L., Nieto R., Soler A., Arias M.L., Revilla Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018, 36(19): 2694-2704 CrossRef
  73. Granja A.G., Sánchez E.G., Sabina P., Fresno M., Revilla Y. African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. Journal of Virology, 2009, 83(2): 969-980 CrossRef
  74. Nogal M.L., González de Buitrago G., Rodríguez C., Cubelos B., Carrascosa A.L., Salas M.L., Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. Journal of Virology, 2001, 75(6): 2535-2543 CrossRef
  75. Hurtado C., Granja A.G., Bustos M.J., Nogal M.L., González de Buitrago G., de Yébenes V.G., Salas M.L., Revilla Y., Carrascosa A.L. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology, 2004, 326(1): 160-170 CrossRef
  76. Revilla Y., Callejo M., Rodríguez J.M., Culebras E., Nogal M.L., Salas M.L., Viñuela E., Fresno M. Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein. The Journal of Biological Chemistry, 1998, 273(9): 5405-5411 CrossRef
  77. Zsak L., Caler E., Lu Z., Kutish G.F., Neilan J.G., Rock D L. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. Journal of Virology, 1998, 72(2): 1028-1035 CrossRef
  78. Afonso C.L., Zsak L., Carrillo C., Borca M.V., Rock D.L. African swine fever virus NL gene is not required for virus virulence. The Journal of General Virology, 1998, 79(10): 2543-2547 CrossRef
  79. Keßler C., Forth J.H., Keil G.M., Mettenleiter T.C., Blome S., Karger A. The intracellular proteome of African swine fever virus. Scientific Reports, 2018, 8(1): 14714 CrossRef
  80. Zsak L., Lu Z., Burrage T.G., Neilan J.G., Kutish G.F., Moore D.M., Rock D.L. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. Journal of Virology, 2001, 75(7): 3066-3076 CrossRef
  81. Tulman E.R., Rock D.L. Novel virulence and host range genes of African swine fever virus. Current Opinion in Microbiology, 2001, 4(4): 456-461 CrossRef
  82. Bacciu D., Deligios M., Sanna G., Madrau M.P., Sanna M.L., Dei Giudici S., Oggiano A. Genomic analysis of Sardinian 26544/OG10 isolate of African swine fever virus. Virology Report, 2016, 6: 81-89 CrossRef
  83. Afonso C.L., Piccone M.E., Zaffuto K.M., Neilan J., Kutish G.F., Lu Z., Balinsky C.A., Gibb T.R., Bean T.J., Zsak L., Rock D.L. African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology, 2004, 78(4): 1858-1864 CrossRef
  84. Burrage T.G., Lu Z., Neilan J.G., Rock D.L., Zsak L. African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks. Journal of Virology, 2004, 78(5): 2445-2453 CrossRef
  85. Neilan J.G., Borca M.V., Lu Z., Kutish G.F., Kleiboeker S.B., Carrillo C., Zsak L., Rock D. L. An African swine fever virus ORF with similarity to C-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. The Journal of General Virology, 1999, 80(10): 2693-2697 CrossRef
  86. Portugal R., Coelho J., Höper D., Little N.S., Smithson C., Upton C., Martins C., Leitão A., Keil G.M. Related strains of African swine fever virus with different virulence: genome comparison and analysis. The Journal of General Virology, 2015, 96(2): 408-419 CrossRef
  87. Rodríguez J.M., Yáñez R.J., Almazán F., Viñuela E., Rodriguez J.F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. Journal of Virology, 1993, 67(9): 5312-5320 CrossRef
  88. Borca M.V., Kutish G.F., Afonso C.L., Irusta P., Carrillo C., Brun A., Sussman M., Rock D. L. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology, 1994, 199(2): 463-468 CrossRef
  89. Kay-Jackson P.C., Goatley L.C., Cox L., Miskin J.E., Parkhouse R., Wienands J., Dixon L.K. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. The Journal of General Virology, 2004, 85(1): 119-130 CrossRef
  90. Goatley L.C., Dixon L.K. Processing and localization of the African swine fever virus CD2v transmembrane protein. Journal of Virology, 2011, 85(7): 3294-3305 CrossRef
  91. Chapman D., Tcherepanov V., Upton C., Dixon L.K. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. The Journal of General Virology, 2008, 89(2): 397-408 CrossRef
  92. Tulman E.R., Delhon G.A., Ku B.K., Rock D.L. African swine fever virus. In:  Lesser known large dsDNA viruses. Current topics in microbiology and immunology, vol. 328/J.L. Van Etten (ed.). Springer, Berlin, Heidelberg, 2009: 43-87 CrossRef
  93. Malogolovkin A., Burmakina G., Tulman E.R., Delhon G., Diel D.G., Salnikov N., Kutish G.F., Kolbasov D., Rock D.L. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. The Journal of General Virology, 2015, 96(4), 866-873 CrossRef
  94. Galindo I., Almazán F., Bustos M.J., Viñuela E., Carrascosa A.L. African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology, 2000, 266(2): 340-351 CrossRef
  95. Gonzague M., Roger F., Bastos A., Burger C., Randriamparany T., Smondack S., Cruciere C. Isolation of a non-haemadsorbing, non-cytopathic strain of African swine fever virus in Madagascar. Epidemiology and Infection, 2001, 126(3): 453-459 CrossRef
  96. Pan I.C., Hess W.R. Virulence in African swine fever: its measurement and implications. American Journal of Veterinary Research, 1984, 45(2): 361-366.
  97. Mima K.A., Burmakina G.S., Titov I.A., Malogolovkin A.S. African swine fever virus glycoproteins p54 and CD2v in the context of immune response modulation: bioinformatic analysis of genetic variability and heterogeneity. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2015, 50(6): 785-793 CrossRef
  98. Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J.M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Frontiers in Veterinary Science, 2019, 6: 137 CrossRef
  99. Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., Correa-Fiz F., Accensi F., Navas M.J., Vidal E., Bustos M.J., Rodríguez J.M., Gallei A., Nikolin V., Salas M.L., Rodríguez F. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology,2017, 191(21): e01058-17 CrossRef
  100. Lopez E., van Heerden J., Bosch-Camós L., Accensi F., Navas M.J., López-Monteagudo P., Argilaguet J., Gallardo C., Pina-Pedrero S., Salas M.L., Salt J., Rodriguez F. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses, 2020, 12(12): 1474 CrossRef
  101. Lopez E., Bosch-Camós L., Ramirez-Medina E., Vuono E., Navas M.J., Muñoz M., Accensi F., Zhang J., Alonso U., Argilaguet J., Salas M.L., Anachkov N., Gladue D.P., Borca M.V., Pina-Pedrero S., Rodriguez F. Deletion mutants of the attenuated recombinant ASF virus, BA71ΔCD2, show decreased vaccine efficacy. Viruses,2021, 13(9): 1678 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)