PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.2.272eng

UDC: 636.1:575.174(571.56)

Acknowledgements:
Supported financially by Russian Science Foundation (project № 19-76-20058)

 

GENETIC STRUCTURE OF THE LOCAL YAKUTIAN HORSE POPULATION FOR GENES MC1R, ASIP, DMRT3, AND MSTN

L.V. Kalinkova1, A.M. Zaitsev1, R.V. Ivanov2

1All-Russian Research Institute for Horse Breeding, Divovo, Rybnoe District, Ryazan Province, 391105 Russia, e-mail genlab.horses.ru@gmail.com ( corresponding author), vniik08@mail.ru;
2Safronov Yakut Research Institute of Agriculture, FRC Yakut Research Center SB RAS, 23/1, ul. Bestuzheva-Marlinskogo, Yakutsk, Republic of Sakha (Yakutia), 677001 Russia, e-mail revoriy@list.ru

ORCID:
Kalinkova L.V. orcid.org/0000-0002-7129-3133
Ivanov R.V. orcid.org/0000-0001-9940-2162
Zaitsev A.M. orcid.org/0000-0003-4260-602X

October 6, 2021

 

The Yakutian horse is believed to be one of the oldest breeds. The breed has unique morphological characteristics and is well adapted to survive within the Arctic Circle. Yakutian horses have compact body conformation and extremely thick winter coats with long mane and tail. In the Yakutian breed dominate light coat colours: gray and dun. The gray and dun coat colours of Yakutian horses are their natural camouflage. The Yakutian horse is multipurpose breed, because the local horses have been used by people not only for the production of milk and meat, but also as transport animals. In this paper, the genetic structure of the native Yakutian breed was characterized using markers of four genes that are associated with important selected traits in different modern populations of domestic horses (Equus caballus). The aim of our study was to investigate the polymorphism of the ASIP and MC1R genes that determine skin and hair pigmentation, as well as to assess the occurrence of mutations in the MSTN (g.66493737C>T) and DMRT3 (g.22999655C>A) genes associated with athletic performance and locomotion in domestic horses. Hair samples were collected from 45 adult purebred Yakutian horses (Equus caballus), including 11 samples from animals of the indigenous type and 34 samples from animals of the Yana type. DNA was isolated using ExtraGene™ DNA Prep 200 reagents (Isogen Laboratory, Russia). Genotyping for the SNP marker C>T of the MC1R gene was carried out using the PCR-RFLP (PCR-restriction fragment length polymorphism) method according to L. Mark-lund et al. (1996). Detection of 11 bp deletion in the ASIP gene was carried out according to the method described by S. Rieder et al. (2001). Allele nomenclature was used according to M. Reißmann (2009): E — dominant wild-type allele, e— recessive (mutant) allele (MC1R); A — dominant wild-type allele, a — recessive (mutant) allele (ASIP). The SNP mutation in the MSTN gene (g.66493737C>T) was detected by the amplification-created restriction site-PCR (ACRS-PCR) method described by M. Gábor et al. (2014). Genotyping of DNA samples for the SNP marker of the DMRT3 gene (g.22999655C>A) was performed by PCR-RFLP method, C>A polymorphism was detected using restriction endonuclease HpyF3I (Thermo Scientific, Lithuania). Frequencies of alleles, frequencies of genotypes in the population and observed heterozygosity were calculated. Polymorphism of the ASIP and MC1R genes observed in Yakutian horses demonstrated a predominance of allelic variants that determine the synthesis of eumelanin, the darker type of the pigment. In the studied group of horses the frequency of the dominant E allele of the MC1R gene that determines the production of the black pigment eumelanin, was 0.711. The number of homozygous carriers of the recessive mutation of the MC1R gene (e allele) that determines production of red pigment pheomelanin was 13.3 %. The frequency of the dominant A allele of the ASIP gene that limits the synthesis of the black pigment eumelanin and affects the character of its distribution was 0.400. The number of homozygous carriers of the recessive mutation of the ASIP gene (a allele) among the tested Yakutian horses was 40 %. This is relatively high value, because in the most of modern horse breeds, the recessive a allele of the ASIP gene is rather rare. In total, eight different genotypes were identified for two key genes affecting skin and hair pigmentation. The most typical genotypes for Yakutian horses were E/E-A/a and E/E-a/a. The character of skin and hair pigmentation in the Yakutian horses could have an adaptive meaning for survival within the Arctic Circle. The frequency of the mutant variants of genes DMRT3 (g.22999655C>A) and MSTN (g.66493737C>T) in the tested horses were 0.011 and 0.022, respectively. Obviously, being presented in the population at a low frequency, the mutant variants of the DMRT3 and MSTN genes have no selection value, because historically, the Yakutian horse has served people as a transport animal in the forest and swampy areas, where only riding is suitable and the most convenient gait is walk.

Keywords: horses, Yakutian breed, DNA markers, polymorphism, MC1R, ASIP, DMRT3, MSTN, eumelanin, pheomelanin, performance traits.

 

REFERENCES

  1. Alekseev N.D. Nauka i tekhnika v Yakutii, 2007, 1(12): 15-18 (in Russ.).
  2. Vinokurov I.N. Traditsionnaya kul'tura narodov Severa: produktivnoe konevodstvo severo-vostoka Yakutii [Traditional culture of the peoples of the North: productive horse breeding in the northeast of Yakutia]. Novosibirsk, 2009 (in Russ.).
  3. Abramov A.F., Ivanov R.V., Alekseev N.D., Stepanov K.M., Semenova A.A., Mironov S.M. Myasnaya produktivnost' i kachestvo myasa porod loshadei, razvodimykh v Yakutii [Meat productivity and meat quality of horse breeds bred in Yakutia]. Yakutsk, 2013 (in Russ.).
  4. Alekseev N.D., Stepanov N.P. Dostizheniya nauki i tekhniki APK, 2006, 5: 8-10 (in Russ.).
  5. Ivanov R.V. Konevodstvo i konnyi sport, 2021, 1: 28-30 CrossRef (in Russ.).
  6. Librado P., Der Sarkissian C., Ermini L., Schubert M., Jónsson H., Albrechtsen A., Fumagalli M., Yang M. A., Gamba C., Seguin-Orlando A., Mortensen C.D., Petersen B., Hoover C.A., Lorente-Galdos B., Nedoluzhko A., Boulygina E., Tsygankova S., Neuditschko M., Jagannathan V., Thèves C., Alfarhan A.H., Alquraishi S.A., Al-Rasheid Kh.A.S., Sicheritz-Ponten T., Popov R., Grigoriev S., Alekseev A.N., Rubin E.M., McCue M., Rieder S., Leeb T., Tikhonov A., Crubézy E., Slatkin M., Marques-Bonet T., Nielsen R., Willerslev E., Kantanen J., Prokhortchouk E., Orlando L. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences, 2015, 112(50): 6889-6897 CrossRef
  7. Ludwig A., Pruvost M., Reissman M., Benecke N., Brockmann G.A., Castaños P., Cieslak M., Lippold S., Llorente L., Malaspinas A.-S., Slatkin M., Hofreiter M. Coat color variation at the beginning of horse domestication. Science, 2009, 324(5926): 485 CrossRef
  8. Bailey E.F., Brooks S.A. Horse genetics. CABI, 2020.
  9. Reißmann M. Die Farben der Pferde. Cadmos, 2009.
  10. Sponenberg D.P., Bellone R. Equine color genetics. Willey-Blackwell, 2017.
  11. Marklund L., Johansson Moller M., Sandberg K., Andersson L. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mammalian Genome, 1996, 7: 895-899 CrossRef
  12. Rieder S., Taourit S., Mariat D., Langlois B., Guérin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mammalian Genome, 2001, 12: 450-455 CrossRef
  13. Gabyshev M.F. Yakutskaya loshad' [Yakut horse]. Yakutsk, 1957 (in Russ.).
  14. Rosengren Pielberg G., Golovko A., Sundström E., Curik I., Lennartsson J., Seltenhammer M.H., Druml T., Binns M., Fitzsimmons C., Lindgren G., Sandberg K., Baumung R., Vetterlein M., Strömberg S., Grabherr M., Wade C., Lindblad-Toh K., Pontén F., Heldin C.-H., Sölkner J., Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics, 2008, 40: 1004-1009 CrossRef
  15. Imsland F., McGowan K., Rubin C.-J., Henegar C., Sundström E., Berglund J., Schwochow D., Gustafson U., Imsland P., Lindblad-Toh K., Lindgren G., Mikko S., Millon L., Wade C., Schubert M., Orlando L., Penedo M.C.T., Barsh G.S., Andersson L. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nature Genetics, 2016, 48: 152-160 CrossRef
  16. Wutke S., Andersson L., Benecke N., Sandoval-Castellanos E., Gonzalez J., Hallsson J.H., Lõugas L., Magnell O., Morales-Muniz A., Orlando L., Pálsdóttir A.H., Reissmann M., Muñoz-Rodríguez M.B., Ruttkay M., Trinks A., Hofreiter M., Ludwig A. The origin of ambling horses. Current Biology, 2016, 26(15): R697-R699 CrossRef
  17. Toktosunov B.I., Abdurasulov A.Kh., Musakunov M.K. Zootekhnicheskaya nauka Belarusi, 2018, 2: 235-242 (in Russ.).
  18. Andersson L.S., Larhammar M., Memic F., Wootz H., Schwochow D., Rubin C.-J., Patra K., Arnason T., Wellbring L., Hjälm G., Imsland F., Petersen J.L., McCue M.E., Mickelson J.R., Cothran G., Ahituv N., Roepstorff L., Mikko S., Vallstedt A., Lindgren G., Andersson L., Kullander K. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature, 2012, 488(7413): 642-646 CrossRef
  19. Promerová M., Andersson L.S., Juras R., Penedo M.C.T., Reissmann M., Tozaki T., Bellone R., Dunner S., Hořín P., Imsland F., Imsland P., Mikko S., Modrý D., Roed K.H., Schwochow D., Vega-Pla J.L., Mehrabani-Yeganeh H., Yousefi-Mashouf N., Cothran E.G., Lindgren G., Andersson L. Worldwide frequency distribution of the ‘Gait keeper’ mutation in the DMRT3 gene. Animal Genetics, 2014, 45(2): 274-282 CrossRef
  20. Staiger E.A., Almén M.S., Promerová M., Brooks S., Cothran E.G., Imsland F., Jäderkvist Fegraeus K., Lindgren G., Mehrabani Yeganeh H., Mikko S., Vega-Pla J.L., Tozaki T., Rubin C.-J., Andersson L. The evolutionary history of the DMRT3 'Gait keeper' haplotype. Animal Genetics, 2017, 48(5): 551-559 CrossRef
  21. Kharing F. Rukovodstvo po razvedeniyu zhivotnykh. Tom III. Kniga I. Porody loshadei i krupnogo rogatogo skota [Animal breeding guide. Volume III. Book I. Breeds of horses and cattle]. Moscow, 1965 (in Russ.).
  22. Hill E.W., McGivney B.A., Gu J., Whiston R., Machugh D.E. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics, 2010, 11: 552 CrossRef
  23. Bower M.A., McGivney B.A., Campana M.G., Gu J., Andersson L.S., Barrett E., Davis C.R., Mikko S., Stock F., Voronkova V., Bradley D.G., Fahey A.G., Lindgren G., MacHugh D.E., Sulimova G., Hill E.W. The genetic origin and history of speed in the Thoroughbred racehorse. Nature Communications, 2012, 3: 643 CrossRef
  24. Pereira G.L., Matteis R., Regitano L.C.A., Chardulo L.A.L., Curi R.A. MSTN, CKM, and DMRT3 gene variants in different lines of quarter horses. Journal of Equine Veterinary Science, 2016, 39: 33-37 CrossRef
  25. Librado P., Fages A., Gaunitz C., Leonardi M., Wagner S., Khan N., Hanghøj K., Alquraishi S.A., Alfarhan A.H., Al-Rasheid K.A., Der Sarkissian C., Schubert M., Orlando L. The evolutionary origin and genetic makeup of domestic horses. Genetics, 2016, 204(2): 423-434. CrossRef
  26. Cieslak J., Cholewinski G., Mackowski M. Genotyping of coat color genes (MC1R, ASIP, PMEL17, and MATP) polymorphism in cold-blooded horses bred in Poland reveals sporadic mistakes in phenotypic descriptions. Animal Science Papers and Reports, 2013, 31(2): 159-164.
  27. Gábor M., Miluchová M., Trakovická A. Development of ACRS-PCR method for detection of single nucleotide polymorphism g.66493737C/T of the equine myostatin gene (MSTN). Scientific Papers: Animal Science and Biotechnologies, 2014, 47(2): 52-55.
  28. Kalinkova L.V., Zaitsev A.M., Kalashnikov V.V. Veterinariya, zootekhniya i biotekhnologiya, 2019, 7: 60-65 (in Russ.).
  29. Kuznetsova M.M., Sorokin S.I., Mavropulo V.A., Gladyr' E.A. Zootekhniya, 2012, 12: 9-12 (in Russ.).
  30. Kalinkova L.V. Genetika i razvedenie zhivotnykh, 2020, 2: 50-53 (in Russ.).
  31. Kim N.-Y., Han S.-H., Lee S.-S., Lee C.-E., Park N.-G., Ko M.-S., Yang Y.-H. Relationship between MC1R and ASIP genotypes and basic coat colors in Jeju horses. Journal of Animal Science and Technology, 2011, 53(2): 107-111 CrossRef
  32. Bellone R.R. Pleiotropic effects of pigmentation genes in horses. Animal Genetics, 2010, 41(s2): 100-110 CrossRef
  33. Jacobs L.N., Staiger E.A., Albright J.D., Brooks S.A. The MC1R and ASIP coat color loci may impact behavior in the horse. Journal of Heredity, 2016, 107(3): 214-219 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)