doi: 10.15389/agrobiology.2021.2.292eng

UDC: 636.7:575.174.015.3

The authors are sincerely grateful to Larissa M. Fedorova PhD for her interest in the problem of domestication, fruitful discussion and helpful advice in preparing this article for publication.



V.I. Glazko1, 2, G.Yu. Kosovsky2, T.V. Blokhina1, A.A. Zhirkova1,
T.T. Glazko1, 2 ✉

1Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail,,, (✉ corresponding author);
2Afanas’ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, 6, ul. Trudovaya, pos. Rodniki, Ramenskii Region, Moscow Province, 140143 Russia, e-mail

Glazko V.I.
Zhirkova A.A.
Kosovskii G.Yu.
Glazko T.T.
Blokhina T.V.

Received December 2, 2020

Social activity is the basis of interaction between different species in the process of common niche forming, including animal domestication. The increased social activity is universal characteristic of the “domestication syndrome” for different species (M.A. Zeder, 2017). It is assumed that some elements of this increase are due to a certain neotenization of a number of brain metabolic pathways (M. Somel et al., 2009). This is in good agreement with the data on the association of "domestication syndrome" with the slowing of neural crest cell proliferation (M.A. Zeder, 2015). The syndrome of hypersocialization (Williams-Behren Syndrome — WBS) in humans has been described, associated with hemideletion/hemiduplication of the 7q11.23 region, which includes 25-28 genes whose products are critical for the activity of various aspects of the central nervous system (A. Antonell et al., 2010). It was found that the complex of such genes is located on chromosome 6 in canids, and the domestic dog, considered in recent years as the main model object for studying the genetic mechanisms of domestication (E.A. Ostrander et al., 2019), differs from wolves in the presence of transposon insertions, increased methylation, and reduced gene expression in this region (B.M. von Holdt et al., 2017, 2018; D. Tandon et al., 2019). The aim of this work was to analyze such insertions in the region of the key gene for increased social activity in dogs WBSCR17 (Cfa6.6 and Cfa6.7) in representatives of different breeds and interspecific hybrids with jackals, as well as finding out the presence of mobile genetic elements in these areas. The detected sequences have high homology to the non-autonomous dispersed nuclear element SINEC2A1_CF (94 % homology) and to two regions of endogenous retrovirus 3 the sequences of which are described in humans and cattle (approximately 80 % homology). Data were obtained on the increased variability of the presence and number of insertions into these areas in dogs of different breeds and hybrids, on the presence of homology sites to endogenous human and bovine retroviruses, as well as a short dispersed nuclear element, species-specific for domestic dogs, SINEC2A1_CF, carrying the hexanucleotide AATAAA which contributes to the completion of transcription. These finding suggest the involvement of retroviruses in the formation of an aggregate niche in the domestication process, which leads to increased variability that contributes to the selection of animals with hypersocialization.

Keywords: domestication, hypersocialization, Williams-Behren syndrome, retrotransposons, dog breeds and hybrids, aggregate niche.



  1. Zeder M.A. Core questions in domestication research. Proceedings of the National Academy of Sciences, 2015, 112(11): 3191-3198 CrossRef
  2. Zeder M.A. Domestication as a model system for the extended evolutionary synthesis. Interface Focus, 2017, 7(5): 20160133 CrossRef
  3. Colino-Rabanal V.J., Rodríguez-Díaz R., Blanco-Villegas M.J., Peris SJ, Lizana M. Human and ecological determinants of the spatial structure of local breed diversity. Sci Rep., 2018, 8(1): 6452 CrossRef
  4. Sánchez-Villagra M.R., van Schaik C.P. Evaluating the self-domestication hypothesis of human evolution. Evolutionary Anthropology, 2019, 28(3): 133-143 CrossRef
  5. FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. B.D. Scherf, D. Pilling (eds.). FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome, 2015. Available: No date.
  6. Ostrander E.A., Wang G.D., Larson G., von Holdt B.M., Davis B.W., Jagannathan V., Hitte C., Wayne R.K., Zhang Y.P., Dog10K Consortium. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. National Science Review, 2019, 6(4): 810-824 CrossRef
  7. Sykes N., Beirne P., Horowitz A., Jones I., Kalof L., Karlsson E., King T., Litwak H., McDonald R.A., Murphy L.J., Pemberton N., Promislow D., Rowan A., Stahl P.W., Tehrani J., Tourigny E., Wynne C.D.L., Strauss E., Larson G. Humanity’s best friend: a dog-centric approach to addressing global challenges. Animals (Basel), 2020, 10(3): 502 CrossRef
  8. Zanella M., Vitriolo A., Andirko A., Martins P.T., Sturm S., O’Rourke T., Laugsch M., Malerba N., Skaros A., Trattaro S., Germain P.L., Mihailovic M., Merla G., Rada-Iglesias A., Boeckx C., Testa G. Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. Science Advances,2019, 5(12): eaaw7908 CrossRef
  9. Antonell A., Del Campo M., Magano L.F., Kaufmann L., de la Iglesia J.M., Gallastegui F., Flores R., Schweigmann U., Fauth C., Kotzot D., Pérez-Jurado L.A. Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile. Journal of Medical Genetics, 2010, 47(5): 312-320 CrossRef
  10. Etokebe G.E., Axelsson S., Svaerd N.H., Storhaug K., Dembić Z. Detection of hemizygous chromosomal copy number variants in Williams-Beuren Syndrome (WBS) by duplex quantitative PCR array: an unusual type of WBS genetic defect. International Journal of Biomedical Science, 2008; 4(3): 161-170.
  11. Ferrero G.B., Howald C., Micale L., Biamino E., Augello B., Fusco C., Turturo M.G., Forzano S., Reymond A., Merla G. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient. Eur. J. Hum. Genet., 2010, 18(1): 33-38 CrossRef
  12. López-Tobón A., Trattaro S., Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Molecular Autism, 2020, 11(1): 50 CrossRef
  13. Li H.H., Roy M., Kuscuoglu U., Spencer C.M., Halm B., Harrison K.C., Bayle J.H., Splendore A., Ding F., Meltzer L.A., Wright E., Paylor R., Deisseroth K., Francke U. Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice. EMBO Mol. Med., 2009, 1(1): 50-65 CrossRef
  14. Makeyev A.V., Bayarsaihan D. Molecular basis of Williams-Beuren syndrome: TFII-I regulated targets involved in craniofacial development. The Cleft Palate-Craniofacial Journal, 2011, 48(1): 109-116 CrossRef
  15. Lopatina O.L., Komleva Y.K., Gorina Y.V., Olovyannikova R.Y., Trufanova L.V., Hashimoto T., Takahashi T., Kikuchi M., Minabe Y., Higashida H., Salmina A.B. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides, 2018, 72: 1-11 CrossRef
  16. Sohal V.S., Rubenstein J.L.R. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatry, 2019, 24(9): 1248-1257 CrossRef
  17. von Holdt B.M., Shuldiner E., Koch I.J., Kartzinel R.Y., Hogan A., Brubaker L., Wanser S., Stahler D., Wynne C.D.L., Ostrander E.A., Sinsheimer J.S., Udell M.A.R. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. Science Advances, 2017, 3(7): e1700398 CrossRef
  18. Somel M., Franz H., Yan Z., Lorenc A., Guo S., Giger T., Kelso J., Nickel B., Dannemann M., Bahn S., Webster M.J., Weickert C.S., Lachmann M., Pääbo S., Khaitovich P. Transcriptional neoteny in the human brain. Proceedings of the National Academy of Sciences, 2009, 106(14): 5743-5748 CrossRef
  19. Kukekova A.V., Johnson J.L., Xiang X., Feng S., Liu S., Rando H.M., Kharlamova A.V., Herbeck Y., Serdyukova N.A., Xiong Z., Beklemischeva V., Koepfli K.P., Gulevich R.G., Vladimirova A.V., Hekman J.P., Perelman P.L., Graphodatsky A.S., O’Brien S.J., Wang X., Clark A.G., Acland G.M., Trut L.N., Zhang G. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat. Ecol. Evol., 2018, 2(9): 1479-1491 CrossRef
  20. Nakamura N., Toba S., Hirai M., Morishita S., Mikami T., Konishi M., Itoh N., Kurosaka A. Cloning and expression of a brain-specific putative UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase gene. Biological and Pharmaceutical Bulletin, 2005, 28(3): 429-433 CrossRef
  21. Nakayama Y., Nakamura N., Oki S., Wakabayashi M., Ishihama Y., Miyake A., Itoh N., Kurosaka A. A putative polypeptide N-acetylgalactosaminyltransferase/Williams-Beuren syndrome chromosome region 17 (WBSCR17) regulates lamellipodium formation and macropinocytosis. Journal of Biological Chemistry, 2012, 287(38): 32222-32235 CrossRef
  22. Merla G., Ucla C., Guipponi M., Reymond A. Identification of additional transcripts in the Williams-Beuren syndrome critical region. Hum. Genet., 2002, 110(5): 429-438 CrossRef
  23. Tandon D., Ressler K., Petticord D., Papa A., Jiranek J., Wilkinson R., Kartzinel R.Y., Ostrander E.A., Burney N., Borden C., Udell M.A.R., Von Holdt B.M. Homozygosity for mobile element insertions associated with WBSCR17 could predict success in assistance dog training programs. Genes (Basel), 2019, 10(6): 439 CrossRef
  24. Kajikawa M., Okada N. LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell, 2002, 111: 433-444 CrossRef
  25. von Holdt B.M., Ji S.S., Aardema M.L., Stahler D.R., Udell M.A.R., Sinsheimer J.S. Activity of genes with functions in human Williams-Beuren syndrome is impacted by mobile element insertions in the gray wolf genome. Genome Biology and Evolution, 2018, 10(6): 1546-1553 CrossRef
  26. Wang G.D., Shao X.J., Bai B., Wang J., Wang X., Cao X., Liu Y.H., Wang X., Yin T.T., Zhang S.J., Lu Y., Wang Z., Wang L., Zhao W., Zhang B., Ruan J., Zhang Y.P. Structural variation during dog domestication: insights from grey wolf and dhole genomes. National Science Review, 2019, 6(1): 110-122 CrossRef
  27. Sundman A.S., Pértille F., Lehmann Coutinho L., Jazin E., Guerrero-Bosagna C., Jensen P. DNA methylation in canine brains is related to domestication and dog-breed formation. PLoS ONE, 2020, 15(10): e0240787 CrossRef
  28. Kohany O., Gentles A.J., Hankus L., Jurka J. Annotation, submission and screening of repetitive elements in Repbase: Repbase Submitter and Censor. BMC Bioinformatics, 2006, 7: 474 CrossRef
  29. Choi J.D., Del Pinto L.A., Sutter N.B. SINE retrotransposons import polyadenylation signals to 3′UTRs in dog (Canis familiaris). bioRxiv preprint, 2020 CrossRef. December 1, 2020.
  30. Jurka J. Long terminal repeats from domestic cow. Repbase Reports, 2008, 8(8): 847-847.
  31. Glazko V., Zybailov B., Glazko T. Asking the Right question about the genetic basis of domestication: what is the source of genetic diversity of domesticated species? Advancements in Genetic Engineering, 2015, 4(2): 125 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)