PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.2.225eng

UDC: 636.018:591.16

Review was prepared under financial support ofthe Russian Ministry of Education and Science within theme No. 0445-2019-0030. The results of experimental studies of the effect of hormonal stimulation and timing regimen on the OPU efficiency was received under financial support of Russian Scientific Foundation within project No. 19-16-00115.

 

ASSISTED REPRODUCTIVE TECHNOLOGIES: THE HISTORY AND ROLE IN THE DEVELOPMENT OF GENETIC TECHNOLOGIES IN CATTLE (review)

N.A. Zinovieva1, S.V. Pozyabin2, R.Yu. Chinarov1

1Ernst Federal Science Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail n_zinovieva@mail.ru (✉ corresponding author), roman_chinarov@mail.ru;
2Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika K.I. Skryabina, Moscow, 109472 Russia, e-mail jippo77@mail.ru

ORCID:
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Chinarov R.Yu. orcid.org/0000-0001-6511-5341
Pozyabin S.V. orcid.org/0000-0003-1296-2840

Received January 13, 2020

 

The development of technologies of “active” transgenesis has allowed targeted modifications (gene editing, GE) in the genome of farm animals of different species with relatively high efficiency (reviewed by S.Y. Yum et al., 2018; A.L. Van Eenennaam, 2019; N.A. Zinovieva et al., 2019). However, effective improvement of livestock production systems based on GE technologies requires the development of an integrated approaches combined with biotechnology, population genetics, quantitative genomics and advanced reproductive technologies (ART) (C. Rexroad et al., 2019). The development of ART, including obtaining germ plasma for gene editing from animals with the desired genetic characteristics, the effective production of GE-offspring and its as possible earlier multiplication are an integral part of the successful development and implementation of GE technologies in cattle breeding (A.L. Van Eenennaam, 2019). This review provides a retrospective analysis of the development of assisted reproductive technologies (ART), including artificial insemination (R.H. Foote, 2002; R.G. Saacke, 2012; P. Lonergan, 2018), embryo transfer (K.J. Betteridge, 2003; R.J. Mapletoft, 2013), in vitro production of embryos (IVP) (L. Ferré et al., 2019), oocyte retrieval on living animals — Ovum-Pick-Up (R. Boni, 2012; M. Qi et al., 2013), and somatic cell nuclear transfer (C.L. Keefer, 2015; K.R. Bondioli, 2018; A.V. Lopukhov et al., 2019). We describe the state of the art of research and discuss the areas of further improvement of ART for the development of genetic technologies in cattle breeding, including gene editing. The review shows that for more than 100 years of history, significant progress has been made in the development of assisted reproductive technologies of cattle, many of which are now actively used in practical animal breeding (C. Smith, 1988; L. Ferré et al., 2019) and became the basis for the development of effective programs for genetic improvement of livestock, including genomic selection (P.M. VanRaden et al., 2009). Current research priorities are focused on ensuring further progress in cattle breeding through the integration of GE technologies into livestock breeding programs (C. Rexroad et al., 2019, A.L. Van Eenennaam, 2019). Assisted reproductive technologies will play a crucial role in this ambitious task.

Keywords: cattle, assisted reproductive technologies, gene editing.

 

REFERENCES

  1. Cheng H., Clutter A., Cockett N., Ernst C., Fulton J.E., Liu J., Lunney J., Neibergs H., Purcell C., Smith T.P.L., Sonstegard T., Taylor J., Telugu B., Van Eenennaam A., Van Tassell C.P., Wells K. Genome to phenome: improving animal health, production, and well-being — a new USDA blueprint for animal genome research 2018-2027. Frontiers in Genetics, 2019, 10: 327 CrossRef
  2. Federal'naya nauchno-tekhnicheskaya programma razvitiya geneticheskikh tekhnologii na 2019-2027 gody. Utverzhdena Postanovleniem Pravitel'stva Rossiiskoi Federatsii ot 22 aprelya 2019 goda № 479 [Federal scientific and technical program for the development of genetic technologies for 2019-2027] (in Russ.).
  3. VanRaden P.M., Van Tassell C.P., Wiggans G.R., Sonstegard T.S., Schnabel R.D., Taylor J.F., Schenkel F.S. Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 2009, 92(1): 16-24 CrossRef
  4. Science breakthroughs to advance food and agricultural research by 2030. A consensus study report of the National Academies of Sciences, Engineering and Medicine. The National Academies Press, Washington, DC, 2019 CrossRef
  5. Yum S.Y., Youn K.Y., Choi W.J., Jang G. Development of genome engineering technologies in cattle: from random to specific. Journal of Animal Science and Biotechnology, 2018, 9: 16 CrossRef
  6. Van Eenennaam A.L. Application of genome editing in farm animals: cattle. Transgenic Research, 2019, 28: 93-100 CrossRef
  7. Zinovieva N.A., Volkova N.A., Bagirov V.A. Genome editing: current state of research and application to animal husbandry. Applied Biochemistry and Microbiology, 2019, 55(7): 711-721 CrossRef
  8. Foote R.H. The history of artificial insemination: selected notes and notables. Journal of Animal Science, 2002, 80(2): 1-10.
  9. Saacke R.G. AI: a historical perspective. Proc. of the 24th Technical Conference on Artificial insemination and reproduction. Milwaukee, WI, USA, 2012: 138-150.
  10. Lonergan P. Review: Historical and futuristic developments in bovine semen technology. Animal, 2018, 12(S1): s4-s18 CrossRef
  11. Spallanzani L. Experiences pour servir a l’liistoire de la generation des animaux et des plantes. Geneve, 1786.
  12. Heape W. The artificial insemination of mammals and subsequent possible fertilisation or impregnation of their ova. Proceedings of the Royal Society of London, 1897, 61(369-377): 52-63 CrossRef
  13. Home E. An account of the dissection of an hermaphrodite dog. To which are prefixed, some observations on hermaphrodites in general. By Everard Home, Esq. F. R. S. Philosophical Transactions of the Royal Society, 1799, 89: 157-178. Available: https://www.jstor.org/stable/107031. Accessed: 21.04.2020.
  14. Millais E. Influence with special reference to that of sire. In: The Dog Owners’ Annual for 1894. London, Dean, 1894: 153.
  15. Herman H.A. Improving cattle by the millions: NAAB and the development and worldwide application of artificial insemination. University of Missouri Press, Columbia, 1981.
  16. Walters E.M., Benson J.D., Woods E.J., Critser J.K. The history of sperm cryopreservation importance of sperm cryopreservation. In: Sperm banking: theory and practice. A.A. Pacey, M.J. Tomlinson (eds.). Cambridge University Press, 2009.
  17. Ivanov I.I. Arkhiv biologicheskikh nauk, 1906, 12(4-5): 376-509 (in Russ.).
  18. Ivanoff E.I. On the use of artificial insemination for zootechnical purposes in Russia. The Journal of Agricultural Science, 1922, 12(3): 244-256 CrossRef
  19. Milovanov V.K. Iskusstvennoe osemenenie sel'skokhozyaistvennykh zhivotnykh [Artificial insemination of farm animals]. Moscow, 1938 (in Russ.).
  20. Shaffner C.S. Longevity of fowl spermatozoa in frozen condition. Science, 1942, 96(2493): 377 CrossRef
  21. Sokolovskaya I.I. Doklady VASKHNIL, 1947, 6: 21-23 (in Russ.).
  22. Polge C., Smith A.U., Parkes A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949, 164: 666 CrossRef
  23. Bernshtein A.D., Petropavlovskii V.V. Byulleten' eksperimental'noi biologii i meditsiny, 1937, 1: 21-25 (in Russ.).
  24. Polge C. Functional survival of fowl spermatozoa after freezing at -79 °S. Nature, 1951, 167: 949-950 CrossRef
  25. Smith A.U., Polge C. Storage of bull spermatozoa at low temperatures. Veterinary Record, 1950, 62: 115-116.
  26. Hess E.A., Teague H.S., Ludwick T.M., Martig R.C. Swine can be bred with frozen semen. Ohio Farm Home Res., 1957, 42: 100
  27. Barker C.A.V., Grandier J.C.C. Pregnancy in a mare resulted from frozen epididymal spermatozoa. Can. J. Comp. Med. Vet. Sci., 1957, 21(2): 47-51.
  28. Milovanov V.K., Sokolovskaya I.I. Vestnik sel'skokhozyaistvennoi nauki, 1980, 12: 122-134 (in Russ.).
  29. Ernst L.K., TSalitis A.A. Krupnomasshtabnaya selektsiya v skotovodstve [Large-scale livestock breeding]. Moscow, 1982 (in Russ.).
  30. Garner D.L., Gledhill B.L., Pinkel D., Lake S., Stephenson D., Van Dilla M.A., Johnson L.A. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biology of Reproduction, 1983, 28(2): 312-321 CrossRef
  31. Seidel G.E. Jr. Update on sexed semen technology in cattle. Animal, 2014, 8(s1): 160-164 CrossRef
  32. Rath D., Barcikowski S., de Graaf S., Garrels W., Grossfeld R., Klein S., Knabe W., Knorr C., Kues W., Meyer H., Michl J., Moench-Tegeder G., Rehbock C., Taylor U., Washausen S. Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction, 2013, 145(1): R15-R30 CrossRef
  33. Pinkel D., Lake S., Gledhill B.L., Van Dilla M.A., Stephenson D., Watchmaker G. High resolution DNA content measurements of mammalian sperm. Cytometry, 1982, 3(1): 1-9 CrossRef
  34. Zinovieva N.A. Haplotypes affecting fertility in Holstein cattle. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2016, 51(4): 423-435 CrossRef
  35. Betteridge K.J. A history of farm animal embryo transfer and some associated techniques. Animal Reproduction Science, 2003, 79(3-4): 203-244 CrossRef
  36. Mapletoft R.J. History and perspectives on bovine embryo transfer. Animal Reproduction, 2013, 10(3): 168-173
  37. Willett E.L., Black W.G., Casida L.E., Stone W.H., Buckner P.J. Successful transplantation of a fertilized bovine ovum. Science, 1951, 113(2931): 247 CrossRef
  38. Elsden R.P., Hasler J.F., Seidel G.E. Jr. Non-surgical recovery of bovine eggs. Theriogenology, 1976, 6(5): 523-532 CrossRef
  39. Rowe R.F., Del Campo M.R., Critser J.K., Ginther O.J. Embryo transfer in cattle: nonsurgical transfer. Am. J. Vet. Res., 1980, 41(7): 1024-1028.
  40. Smith C. Applications of embryo transfer in animal breeding. Theriogenology, 1988, 29(1): 203-212 CrossRef
  41. Ferré L., Kjelland M., Strøbech L., Hyttel P., Mermillod P., Ross P. Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 2020, 14(5): 991-1004 CrossRef
  42. Ernst L.K., Sergeev N.I. Transplantatsiya embrionov sel'skokhozyaistvennykh zhivotnykh [Transplantation of farm animal embryos]. Moscow, 1989 (in Russ.).
  43. Prokof'ev M.I. Regulyatsiya vosproizvodstva krupnogo rogatogo skota [Regulation of cattle reproduction]. Moscow, 1989 (in Russ.).
  44. Brackett B.G., Bousquet D., Boice M.L., Donawick W.J., Evans J.F., Dressel M.A. Normal development following in vitro fertilization in the cow. Biology of Reproduction, 1982, 27(1): 147-158 CrossRef
  45. Goto K., Kajihara Y., Kosaka S., Koba M., Nakanishi Y., Ogawa K. Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes. Journal of Reproduction and Fertility, 1988, 83(2): 753-758 CrossRef
  46. Boni R. Ovum pick-up in cattle: a 25 years retrospective analysis. Animal Reproduction, 2012, 9(3): 362-369.
  47. Qi M., Yao Y., Ma H., Wang J., Zhao X., Liu L., Tang X., Zhang L., Zhang S., Sun F. Transvaginal ultrasound guided Ovum Pick-up (OPU) in cattle. Journal of Biomimetics Biomaterials and Tissue Engineering, 2013, 18: 118 CrossRef
  48. Kruip T.A.M., Pieterse M.C., van Beneden T.H., Vos P.L., Wurth Y.A., Taverne M.A. A new method for bovine embryo production: a potential alternative to superovulation. Veterinary Record, 1991, 128(9): 208-210 CrossRef
  49. Bousquet D., Twagiramungu H., Morin N., Brisson C., Carboneau G., Durocher J. In vitro embryo production in the cow: an effective alternative to the conventional embryo production approach. Theriogenology, 1999, 51(1): 59-70 CrossRef
  50. Pontes J.H.F., Silva K.C.F., Basso A.C., Rigo A.G., Ferreira C.R., Santos G.M.G., Sanches B.V., Porcionato J.P., Vieira P.H., Faifer F.S., Sterza F.A., Schenk J.L., Seneda M.M. Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology, 2010, 74(8): 1349-1355 CrossRef
  51. Lambert R.D., Bernard C., Rioux J.E., Béland R., D'Amours D., Montreuil A. Endoscopy in cattle by the paralumbar route: technique for ovarian examination and follicular aspiration. Theriogenology, 1983, 20(2): 149-161 CrossRef
  52. Callesen H., Greve T., Christensen F. Ultrasonically guided aspiration of bovine follicular oocytes. Theriogenology, 1987, 27(1): 217 CrossRef
  53. Pieterse M.C., Kappen K.A., Kruip T.A.M., Taverne M.A.M. Aspiration of bovine oocytes during transvaginal ultrasound scanning of the ovaries. Theriogenology, 1988, 30(4): 751-762 CrossRef
  54. Galli C., Crotti G., Notari C., Turini P., Duchi R., Lazzari G. Embryo production by ovum pick up from live donors. Theriogenology, 2001, 55(6): 1341-1357 CrossRef
  55. Chastant-Maillard S., Quinton H., Lauffenburger J., Cordonnier-Lefort N., Richard C., Marchal J., Mormede P., Renard J.P. Consequences of transvaginal follicular puncture on well-being in cows. Reproduction, 2003, 125(4): 555-563 CrossRef
  56. Faber D.C., Molina J.A., Ohlrichs C.O., Vander Zwaag D.F., Ferre L.B. Commercialization of animal biotechnology. Theriogenology, 2003, 59(1): 125-138 CrossRef
  57. Kruip T.A.M., Boni R., Wurth Y.A., Roelofsen M.W.M., Pieterse M.C. Potential use of ovum pick-up for embryo production and breeding in cattle. Theriogenology, 1994, 42(4): 675-683 CrossRef
  58. Wu B., Zan L., Quan F., Wang H. A novel discipline in embryology — animal embryo breeding. In: New discoveries in embryology. B. Wu (ed.). IntechOpen Limited, London, 2015: Ch. 8 CrossRef
  59. Chaubal S.A., Ferre L.B., Molina J.A., Faber D.C., Bols P.E., Rezamand P., Tian X., Yang X. Hormonal treatments for increasing the oocyte and embryo production in an OPU-IVP system. Theriogenology, 2007, 67(4): 719-728 CrossRef
  60. Sendag S., Cetin Y., Alan M., Hadeler K.G., Niemann H. Effects of eCG and FSH on ovarian response, recovery rate and number and quality of oocytes obtained by ovum pick-up in Holstein cows. Animal Reproduction Science, 2008, 106(1-2): 208-214 CrossRef
  61. Chinarov R.Yu., Taradainik N.P., Taradainik T.E., Singina G.N., Pozyabin S.V. V sbornike: Nauchnye trudy uchebno-metodicheskoi i nauchno-prakticheskoi konferentsii, posvyashchennoi 100-letiyu so dnya osnovaniya FGBOU VO MGAVMiB — MVA im. K.I. Skryabina «Aktual'nye problemy veterinarnoi meditsiny, zootekhnii i biotekhnologii» [In: Scientific works of conference “Actual problems of veterinary medicine, livestock and biotechnology” dedicated to the 100th anniversary of Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology]. Moscow, 2019: 377-378 (in Russ.).
  62. De Roover R., Bols P.E.J., Genicot G., Hanzen Ch. Characterisation of low, medium and high responders following FSH stimulation prior to ultrasound- guided transvaginal oocyte retrieval in cows. Theriogenology, 2005, 63(7): 1902-1913 CrossRef
  63. Leroy J.L.M.R., Van Soom G., Opsomer G., Goovaerts I.G.F., Bols P.E.J. Reduced fertility in high-yielding dairy cows: Are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reproduction in Domestic Animals, 2008, 43(5): 623-632 CrossRef
  64. Ferreira R.M., Ayres H., Chiaratti M.R., Ferraz M.L., Araújo A.B., Rodrigues C.A., Watanabe Y.F., Vireque A.A., Joaquim D.C., Smith L.C., Meirelles F.V., Baruselli P.S. The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. Journal of Dairy Science, 2011, 94(5): 2383-2392 CrossRef
  65. Ferreira R.M., Chiaratti M.R., Macabelli C.H., Rodrigues C.A., Ferraz M.L., Watanabe Y.F., Smith L.C., Meirelles F.V., Baruselli P.S. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biology of Reproduction, 2016, 94(66): 1-10 CrossRef
  66. Chaubal S.A., Molina J.A., Ohlrichs C.L., Ferre L.B., Faber D.C., Bols P.E., Riesen J.W., Tian X., Yang X. Comparison of different transvaginal ovum pick-up protocols to optimise oocyte retrieval and embryo production over a 10-week period in cows. Theriogenology, 2006, 65(8): 1631-1648 CrossRef
  67. Lopes A.S., Martinussen T., Greve T., Callesen H. Effect of days post-partum, breed and ovum pick-up scheme on bovine oocyte recovery and embryo development. Reproduction in Domestic Animals, 2006, 41(3): 196-203 CrossRef
  68. Li F., Chen X., Pi W., Liu C., Shi Z. Collection of oocytes through transvaginal ovum pick-up for in vitro embryo production in Nanyang Yellow cattle. Reproduction in Domestic Animals, 2007, 42(6): 666-670 CrossRef
  69. Chinarov R.Yu., Lukanina V.A., Singina G.N., Taradainik N.P. Dostizheniya nauki i tekhniki APK, 2020, 34(2): 57-60 CrossRef (in Russ.).
  70. Rizos D., Burke L., Duffy P., Wade M., Mee J.F., O’Farrell K.J., Macsiurtain M., Boland M.P., Lonergan P. Comparisons between nulliparous heifers and cows as oocyte donors for embryo production in vitro. Theriogenology, 2005, 63(3): 939-949 CrossRef
  71. Takuma T., Sakai S., Ezoe D., Ichimaru H., Jinnouchi T., Kaedei Y., Nagai T., Otoi T. Effects of season and reproductive phase on the quality, quantity and developmental competence of oocytes aspirated Japanese Black cows. Journal of Reproduction and Development, 2010, 56(1): 55-59 CrossRef
  72. Guerreiro B.M., Batista E.O., Vieira L.M., Sá Filho M.F., Rodrigues C.A., Castro Netto A., Silveira C.R., Bayeux B.M., Dias E.A., Monteiro F.M., Accorsi M., Lopes R.N., Baruselli P.S. Plasma anti-mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domestic Animal Endocrinology, 2014, 49: 96-104 CrossRef
  73. Gimenes L.U., Ferraz M.L., Fantinato-Neto P., Chiaratti M.R., Mesquita L.G., Sá Filho M.F., Meirelles F.V., Trinca L.A., Rennó F.P., Watanabe Y.F., Baruselli P.S. The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology, 2015, 83(3): 385-393 CrossRef
  74. Thibier M. Stabilization of numbers of in vivo collected embryos in cattle but significant increases of in vitro bovine produced embryos in some parts of the world. IETS Embryo Transfer Society Newsletter, 2004, 22: 12-19.
  75. Rubin K.C.P., Pontes J.H.F., Nonato-Junior I., Ereno-Junior J.C., Pansard H., Seneda M. Influência do grau de sangue Nelore na produção in vivo de oócitos. Acta Scientiae Veterinariae, 2005, 33: 183.
  76. Batista E.O.S., Macedo G.G., Sala R.V., Ortolan M., Sá Filho M.F., Del Valle T.A., Jesus E.F., Lopes R., Rennó F.P., Baruselli P.S. Plasma antimullerian hormone as a predictor of ovarian antral follicular population in Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Reproduction in Domestic Animals, 2014, 49(3): 448-452 CrossRef
  77. Bols P.E., Leroy J.L., Vanholder T., Van Soom A. A comparison of a mechanical sector and a linear array transducer for ultrasound-guided transvaginal oocyte retrieval (OPU) in the cow. Theriogenology, 2004, 62(5): 906-914 CrossRef
  78. Ward F.A., Lonergan P., Enright B.P., Boland M.P. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology. Theriogenology, 2000, 54(3): 433-446 CrossRef
  79. Manik R.S., Singla S.K., Palta P. Collection of oocytes through transvaginal ultrasound-guided aspiration of follicles in an Indian breed of cattle. Animal Reproduction Science, 2003, 76(3-4): 155-161 CrossRef
  80. Sasamoto Y., Sakaguchi M., Katagiri S., Yamada Y., Takahashi Y. The effects of twisting and type of aspiration needle on the efficiency of transvaginal ultrasound-guided ovum pick-up in cattle. Journal of Veterinary Medical Science, 2003, 65(10): 1083-1086 CrossRef
  81. Bols P.E., Van Soom A., Ysebaert M.T., Vandenheede J.M., de Kruif A. Effects of aspiration vacuum and needle diameter on cumulus oocyte complex morphology and developmental capacity of bovine oocytes. Theriogenology, 1996, 45(5): 1001-1014 CrossRef
  82. Bols P.E., Ysebaert M.T., Van Soom A., de Kruif A. Effects of needle tip bevel and aspiration procedure on the morphology and developmental capacity of bovine compact cumulus oocyte complexes. Theriogenology, 1997, 47(6): 1221-1236 CrossRef
  83. Fayrer-Hosken R.A., Caudle A.B. The laparoscope in follicular oocyte collection and gamete intrafallopian transfer and fertilization (GIFT). Theriogenology, 1991, 36(5): 709-725 CrossRef
  84. Gradela A., Esper C.R., Matos S.P.M., Lanza J.A., Deragon L.A.G., Malheiros R.M. Dominant follicle removal by ultrasound guided transvaginal aspiration and superovulatory response in Nellore cows. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2000, 52(1): 53-58.
  85. Armstrong D.T., Holm P., Irvine B., Petersen B.A., Stubbings R.B., McLean D., Seamark R.F. Pregnancies and live birth from in vitro fertilization of calf oocytes collected by laparoscopic follicular aspiration. Theriogenology, 1992, 38(4): 667-678 CrossRef
  86. Becker F., Kanitz W., Nurnberg G., Kurth J., Spitschak M. Comparison of repeated transvaginal ovum pick up in heifers by ultrasonographic and endoscopic instruments. Theriogenology, 1996, 46(6): 999-1007 CrossRef
  87. Santl B., Wenigerkind H., Schernthaner W., Mödl J., Stojkovic M., Prelle K., Holtz W., Brem G., Wolf E. Comparison of ultrasound-guided vs laparoscopic transvaginal ovum pick-up (OPU) in Simmental heifers. Theriogenology, 1998, 50(1): 89-100 CrossRef
  88. Baldassarre H., Currin L., Michalovic L., Bellefleur A.M., Gutierrez K., Mondadori R.G., Glanzner W.G., Schuermann Y.,  Bohrer R.C., Dicks N., Lopez R., Grand F.-X., Vigneault C.,  Blondinm P., Gourdon J., Bordignon V. Interval of gonadotropin administration for in vitro embryo production from oocytes collected from Holstein calves between 2 and 6 months of age by repeated laparoscopy. Theriogenology, 2018, 116: 64-70 CrossRef
  89. Taneja M., Bols P.E., de Velde A.V., Ju J.C., Schreiber D., Tripp M.W., Yang X. Developmental competence of juvenile calf oocytes in vitro and in vivo: influence of donor animal variation and repeated gonadotropin stimulation. Biology of Reproduction, 2000; 62(1): 206-213 CrossRef
  90. Lohuis M.M. Potential benefits of bovine embryo-manipulation technologies to genetic improvement programs. Theriogenology, 1995, 43(1): 51-60 CrossRef
  91. Reichenbach H.D., Wiebke N.H., Modl J., Zhu J., Brem G. Laparoscopy through the vaginal fornix of cows for the repeated aspiration of follicular oocytes. Veterinary Record, 1994, 135(15): 353-356 CrossRef
  92. Keefer C.L. Artificial cloning of domestic animals. PNAS USA, 2015, 112(29): 8874-8878 CrossRef
  93. Bondioli K.R. Cloning of livestock by somatic cell nuclear transfer. In: Animal Biotechnology 2. H. Niemann, C. Wrenzycki (eds.). Springer, Cham, 2018: 1-20 CrossRef
  94. Lopukhov A.V., Singina G.N., Zinovieva N.A. Biotechnological bases of the development of cloned pig embryos. Vavilovskii Zhurnal Genetiki i Selektsii =Vavilov Journal of Genetics and Breeding, 2019, 23(5): 527-533 CrossRef
  95. Sims M., First N.L. Production of fetuses from totipotent cultured bovine inner cell mass cells. Theriogenology, 1993, 39(1): 313 CrossRef
  96. Vignon X., Chesné P., Le Bourhis D., Heyman Y., Renard J.P. Developmental potential of bovine embryos reconstructed with somatic nuclei from cultured skin and muscle fetal cells. Theriogenology, 1998, 49: 392 CrossRef
  97. Sermyagin A.A., Belous A.A., Konte A.F., Philipchenko A.A., Ermilov A.N., Yanchukov I.N., Plemyashov K.V., Brem G., Zinovieva N.A. Genomic evaluation of bulls for daughters’ milk traits in Russian Black-and-White and Holstein cattle population through the validation procedure. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(6): 1148-1156 CrossRef
  98. Serov O.L. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(4/2): 1055-1064 (in Russ.).
  99. Zinovieva N.A., Volkova N.A., Bagirov V.A., Brem G. Transgenic farm animals: the status of research and prospects. Russian Journal of Genetics: Applied Research, 2016, 6(6): 657-668 CrossRef
  100. Gordon J.W., Scangos G.A., Plotkin D.J., Barbosa J.A., Ruddle F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. PNAS USA, 1980, 77(12): 7380-7384 CrossRef
  101. Hammer R., Pursel V., Rexroad J., Wall R.J., Bolt D.J., Ebert K.M., Palmiter R.D., Brinster R.L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315: 680-683 CrossRef
  102. Brem G., Brenig B., Goodman H.M., Selden R.C., Graf F., Kruff B., Springman K., Hondele J., Meyer J., Winnacker E.-L. Production of transgenic mice, rabbits and pigs by microinjection into pronuclei. Reproduction in Domestic Animals, 1985, 20(4): 251-252 CrossRef
  103. Krimpenfort P., Rademakers A., Eyestone W., van der Schans A., van den Broek S., Kooiman P., Kootwijk E., Platenburg G., Pieper F., Strijker R., de Boer H. Generation of transgenic dairy cattle using 'in vitro' embryo production. Biotechnology, 1991, 9: 844-847 CrossRef
  104. Wall R.J. Pronuclear microinjection. Cloning and Stem Cells, 2001, 3(4): 209-220 CrossRef
  105. Seidel G.E. Jr. Resource requirements for transgenic livestock research. Journal of Animal Science, 1993, 71(S. 3): 26-33 CrossRef
  106. Eyestone W.H. Challenges and progress in the production of transgenic cattle. Reproduction, Fertility and Development, 1994, 6(5): 647-652 CrossRef
  107. Laible G. Production of transgenic livestock: overview of transgenic technologies. In: Animal Biotechnology 2. H. Niemann, C. Wrenzycki (eds.). Springer, Cham, 2018: 95-121 CrossRef
  108. Galli C., Lagutina I., Lazzari G. Introduction to cloning by nuclear transplantation. Cloning and Stem Cells, 2003, 5(4): 223-232 CrossRef
  109. Cibelli J.B., Stice S.L., Golueke P.J., Kane J., Jerry J., Blackwell C., Ponce de Leon A., Robl J.M. Cloned transgenic calves produced from non-quiescent fetal fibroblasts. Science, 1998, 280(5367): 1256-1258 CrossRef
  110. Chan A.W.S., Homan E.J., Ballou L.U., Burns J.C., Bremel R.D. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. PNAS USA, 1998, 95(24): 14028-14033 CrossRef
  111. Kuroiwa Y., Kasinathan P., Choi Y.J., Naeem R., Tomizuka K., Sullivan E.J., Knott J.G., Duteau A., Goldsby R.A., Osborne B.A., Ishida I., Robl J.M. Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnology, 2002, 20(9): 889-94 CrossRef
  112. Hofmann A., Zakhartchenko V., Weppert M., Sebald H., Wenigerkind H., Brem G., Wolf E., Pfeifer A. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction, 2004, 71(2): 405-409 CrossRef
  113. Richt J.A., Kasinathan P., Hamir A.N., Castilla J., Sathiyaseelan T., Vargas F., Sathiyaseelan J., Wu H., Matsushita H., Koster J., Kato S., Ishida I., Soto C., Robl J.M., Kuroiwa Y. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25: 132-138 CrossRef
  114. Yu S., Luo J., Song Z., Ding F., Dai Y., Li N. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638-1640 CrossRef
  115. Liu X., Wang Y., Guo W., Chang B., Liu J., Guo Z., Quan F., Zhang Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nature Communications, 2013, 4(1): 2565 CrossRef
  116. Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C.B., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147-153 CrossRef
  117. Wu H., Wang Y., Zhang Y., Yang M., Lv J., Liu J., Zhang Y.  TALE nickase-mediated SP110 knock-in endows cattle with increased resistance to tuberculosis. PNAS, 2015, 112(13): E1530-E1539 CrossRef
  118. Yum S.Y., Lee S.J., Kim H.M., Choi W.J., Park J.H., Lee W.W, Kim H.J., Bae S.H., Lee J.H., Moon J.Y., Lee J.H., Lee C.I., Son B.J., Song S.H., Ji S.M., Kim S.J., Jang G. Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Scientific Reports, 2016, 6: 27185 CrossRef
  119. Gao Y., Wu H., Wang Y., Liu X., Chen L., Li Q., Cui C., Liu X., Zhang J., Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knock-in cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13 CrossRef
  120. Bosch P., Forcato D.O., Alustiza F.E., Alessio A.P., Fili A.E., Olmos Nicotra M.F., Liaudat A.C., Rodríguez N., Talluri T.R., Kues W.A. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cellular and Molecular Life Sciences, 2015, 72: 1907-1929 CrossRef
  121. Singina G.N., Volkova N.A., Bagirov V.A., Zinov'eva N.A. Cryobanking of somatic cells in conservation of animal genetic resources: prospects and successes (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2014, 6: 3-14 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)