PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.2.295eng

UDC: 636.2:591.39:576.5

Supported financially by the Russian Foundation for Basic Research (project No. 18-29-07089) and the Ministry of Science and Higher Education of the Russian Federation

 

in vitro DEVELOPMENT OF CLONED EMBRYO IN CATTLE IN RELATION WITH FUSION AND ACTIVATION PARAMETERS

G.N. Singina, A.V. Lopukhov, E.N. Shedova

Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail g_singina@mail.ru (✉ corresponding author), shedvek@yandex.ru

ORCID:
Singina G.N. orcid.org/0000-0003-0198-9757
Shedova E.N. orcid.org/0000-0002-9642-2384
Lopukhov A.V. orcid.org/0000-0002-1284-1486

Received December 17, 2019

 

Embryo production through somatic cloning technology has the perspectives for application in reproductive biotechnologies in cattle in order to multiply the most productive and unique genotypes in livestock breeding and create new genotypes using genome editing. Success of somatic cloning depends on the ability of donor somatic cell nucleus (karioplast) to be reprogrammed to totipotent state. Relevant transformations of donor nucleus are mediated by oocyte cytoplasmic factors (cytoplasts) and start from the moment of their association (fusion). Effects of oocyte cytoplasm are direct and depend on many factors. The objective of the present study was to evaluate the cloning efficiency in terms of time of oocyte cytoplasm exposure to donor nucleus before activation, the time of oocyte maturation before their activation in the fused complexes (cytohybrids), and repeated electrofusion of the cytoplast and karyoplast. The effects of these factors on formation of cloned embryos and development to blastocyst stage were studied. Isolated oocyte-cumulus complexes (OCCs) were in vitro matured in TC-199 medium supplemented with 10 % fetal bovine serum, 10 μg/ml of FSH and 10 μg/ml of LH. After 20-24 h of maturation, OCCs were treated with a 0.1 % hyaluronidase, then cumulus cells were mechanically removed and the oocytes with the first polar body were selected. Long-time conserved fetal fibroblasts were in vitro cultured up to monolayer and maintained in contact inhibition during 2 days. Then, cell suspension was prepared for transferring into enucleated oocyte. Somatic cell was transferred to perivitelline space of the oocyte, and two consecutive rectangular 20 μs pulses at constant current with a voltage of 35 V were performed (once or twice if there were no signs of cell-oocyte fusion). The obtained cytohybrids were activated with the ionomycin 1 or 2 hours after fusion (recipient oocytes were matured either 23-25 hours or 26-28 hours). Activated cytohybrides were then cultured up to blastocyst stage. Oocyte cleavage rate were similar in all experimental groups (60.7 to 70.4 %). Blastocyst development rate did not differ between the groups where single or double fusions were performed (29.4±4.4 and 22.8±3.5 %, respectively). Blastocyst rate was 17.4±2.6 % at 1-hour interval between fusion and activation. Two-hour interval increased blastocyst rate to 31.1±3.8 % (p < 0.05). In the case of early activation (23-25 hours of maturation), 29.4±4.8 % of fused complexes developed to the blastocyst stage. With an increase of oocyte maturation time to 26-28 hours, blastocyst rate decreased to 14.6±2.2 % (p < 0.05). Therefore, cloning efficiency depends on the interval between cytohybrid fusion and activation, and the age of MII oocytes at the time of activation of the fused complexes; 2 hours and 23-25 hours, respectively, were the optimal parameters. In addition, the repeated electrofusion of the enucleated oocytes and somatic cells did not affect cytohybrid quality, and, therefore, this procedure can be used for somatic embryo cloning in cattle.

Keywords: cattle, somatic cell nuclear transfer, fusion, activation, embryo development.

 

REFERENCES

  1. Tian X.C., Kubota C., Sakashita K., Izaike Y., Okano R., Tabara N., Curchoe C., Jacob L., Zhang Y., Smith S., Bormann C., Xu J., Sato M., Andrew S., Yang X. Meat and milk compositions of bovine clones. Proceedings of the National Academy of Sciences, 2005, 102(18): 6261-6266 CrossRef
  2. Hoshino Y., Hayashi N., Taniguchi S., Kobayashi N., Sakai K., Otani T., Iritani A., Saeki K. Resurrection of a bull by cloning from organs frozen without cryoprotectant in a -80 °S freezer for a decade. PLoS ONE, 2009, 4(1): e4142 CrossRef
  3. Yonai M., Kaneyama K., Miyashita N., Kobayashi S., Goto Y., Bettpu T., Nagai T. Growth, reproduction, and lactation in somatic cell cloned cows with short telomeres. Journal of Dairy Science, 2005, 88(11): 4097-4110 CrossRef
  4. Van Eenennaam A.L. Application of genome editing in farm animals: cattle. Transgenic Research, 2019, 28(2): 93-100 CrossRef
  5. Brophy B., Smolenski G., Wheeler T., Wells D., L’Huillier P., Laible G. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nature Biotechnology, 2003, 21(2): 157-162 CrossRef
  6. Richt J.A., Kasinathan P., Hamir A.N., Castilla J., Sathiyaseelan T., Vargas F., Sathiyaseelan J., Wu H., Matsushita H., Koster J., Kato S., Ishida I., Soto C., Robl J.M., Kuroiwa Y. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25(1): 132-138 CrossRef
  7. Wu H., Wang Y., Zhang Y., Yang M., Lv J., Liu J., Zhang Y. TALE nickase-mediated SP110 knocking endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences, 2015, 112(13): E1530-E1539 CrossRef
  8. Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C.B., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147-153 CrossRef
  9. Gao Y., Wu H, Wang Y, Liu X, Chen L, Li Q., Cui C., Liu X., Zhang J., Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13 CrossRef
  10. Farin P.W., Piedrahita J.A., Farin C.E. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology, 2006, 65(1): 178-191 CrossRef
  11. Bertolini M., Bertolini L.R., Gerger R.P.C., Batchelder C.A., Anderson G.B. Developmental problems during pregnancy after in vitro embryo manipulations. Rev. Bras. Reprod. Anim., 2007, 31(3): 391-405.
  12. Su J., Wang Y., Liu Q., Yang B., Wu Y., Luo Y., Hu G., Zhang Y. Aberrant mRNA expression and DNA methylation levels of imprinted genes in cloned transgenic calves that died of large offspring syndrome. Livestock Science, 2011, 141(1): 24-35 CrossRef
  13. Yang X.Z., Smith S.L., Tian X.C., Lewin H.A., Renard J.P., Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics, 2007, 39(3): 295-302 CrossRef
  14. Latham K.E. Early and delayed aspects of nuclear reprogramming during cloning. Biology of the Cell, 2005, 97(2): 119-132 CrossRef
  15. Akagi S., Matsukawa K., Takahashi S. Factors affecting the development of somatic cell nuclear transfer embryos in cattle. Journal of Reproduction and Development, 2014, 60(5): 329-335 CrossRef
  16. Wells D.N., Misica P.M., McMillan W.H., Tervit H.R. Production of cloned bovine fetuses following nuclear transfer using cells from a fetal fibroblast cell line. Theriogenology, 1998, 49(1): 330 CrossRef
  17. Akagi S., Yokota M., Neguebi T., Taniyama A., Fuebimoto D., Izaile Y. The timing of fusion and chemical activation in nuclear transfer affects development potential of bovine embryos. Theriogenology, 2001, 55(1): 252 CrossRef
  18. Choi J.Y., Kim C.I., Park C.K., Yang B.K., Cheong H.T. Effect of activation time on the nuclear remodeling and in vitro development of nuclear transfer embryos derived from bovine somatic cells. Molecular Reproduction and Development, 2004, 69(3): 289-295 CrossRef
  19. Liu L., Shin T., Pryor J.H., Kraemer D., Westhusin M. Regenerated bovine fetal fibroblasts support high blastocyst development following nuclear transfer. Cloning, 2001, 3(2): 51-58 (10.1089/15204550152475554">CrossRef
  20. Aston K.I., Li G.P., Hicks B.A., Sessions B.R., Pate B.J., Hammon D., Bunch T.D., White K.L. Effect of the time interval between fusion and activation on nuclear state and development in vitro and in vivo of bovine somatic cell nuclear transfer embryos. Reproduction, 2006, 131(1): 45-51 CrossRef
  21. German S.D., Campbell K.H.S. Livestock somatic cell nuclear transfer. In: Sustainable food production. P. Christou, R. Savin, B.A. Costa-Pierce, I. Misztal, C.B.A. Whitelaw (eds.) Springer, New York, 2013: 1067-1095 CrossRef
  22. Miao Y.L., Kikuchi K., Sun G.Y., Schatten H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 2009, 15(5): 573-585 CrossRef
  23. Lebedeva I.Yu., Singina G.N., Lopukhov A.V., Zinovieva N.A. Dynamics of morphofunctional changes in aging bovine ova during prolonged culture in vitro. Cell and Tissue Biology, 2014, 8(3): 258-266 CrossRef
  24. Akagi S., Geshi M., Nagai T. Recent progress in bovine somatic cell nuclear transfer. Animal Science Journal, 2013, 84(3): 191-199 CrossRef
  25. Akagi S., Matsukawa K., Takahashi S. Factors affecting the development of somatic cell nuclear transfer embryos in cattle. Journal of Reproduction and Development, 2014, 60(5): 329-335 CrossRef
  26. Singina G.N., Lopukhov A.V., Zinov'eva N.A., Shapkanova E.V., Puzik A.A. Optimization of parameters of the oocyte enucleation and fusion with the somatic cell during production of mammalian cloned embryos. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 2: 46-51 CrossRef
  27. Ross P.J., Cibelli J.B. Bovine somatic cell nuclear transfer. In: Cellular programming and reprogramming. Methods in molecular biology (methods and protocols). S. Ding (ed.). Humana Press, 2010, V. 636: 155-177 CrossRef
  28. Bavister B.D., Liebfried M.L., Lieberman G. Development of preimplantation embryos of the golden hamster in a defined culture medium. Biology of Reproduction, 1993, 28(1): 235-247 CrossRef
  29. Rosenkrans C.F.Jr., First N.L. Effect of free amino acids and vitamins on cleavage and develop-mental rate of bovine zygotes in vitro. Journal of Animal Science, 1994, 72(2): 434-437 CrossRef
  30. Liu J., Wang Y., Su J., Wang L., Li R., Li Q., Wu Y., Hua S., Quan F., Guo Z., Zhang Y. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos. Cellular Reprogramming, 2013, 15(2): 134-142 CrossRef
  31. Shen P.C., Lee S.N., Liu B.T., Chu F.H., Wang C.H., Wu J.S., Lin H.H., Cheng W.T.K. The effect of activation treatments on the development of reconstructed bovine oocytes. Animal Reproduction Science, 2008, 106(1-2): 1-12 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)