PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.2.364eng

UDC: 579.62:[573.6.086.83+577.21]

Supported financially by the Government of the Perm Krai within the framework of the scientific project No. С-26/792, and by Slovenian Research Agency (ARRS), grant Nos. P1-0198 and BI-RU/16-18-047

 

А PROBIOTIC BASED ON THE Escherichia coli ŽP STRAIN. I. EFFICIENCY ASSESSMENT OF THE CONJUGATIVE TRANSFER OF THE COLICIN E7 ACTIVITY GENE INTO AVIAN PATHOGENIC E. coli STRAINS in vitro AND in vivo

M.V. Kuznetsova1, I.L. Maslennikova1, J.S. Gizatullina1, D. Žgur Bertok2, M. Starčič Erjavec2

1Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of Ural Branch RAS, 13, ul. Goleva, Perm, 614081 Russia, e-mail info@iegm.ru, mar@iegm.ru (✉ corresponding author), i.maslennikova1974@gmail.com, gizatullina.julia@yandex.ru;
2Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia,e-mail biologija@bf.uni-lj.si, darja.zgur@bf.uni-lj.si, marjanca.starcic.erjavec@bf.uni-lj.si

ORCID:
Kuznetsova M.V. orcid.org/0000-0003-2448-4823
Žgur Bertok D. orcid.org/0000-0003-4166-552X
Maslennikova I.L. orcid.org/0000-0002-2776-8023
Starčič Erjavec M. orcid.org/0000-0003-0200-573X
Gizatullina J.S. orcid.org/0000-0001-9625-1151

Received January 12, 2020

 

The protection of farm animals against infectious diseases is a priority in veterinary medicine. The wide spread of pathogenic and opportunistic bacteria resistant to antibiotics on poultry farms requires the development of modern methods to maintain the health of birds in industrial production. A promising direction to improve measures to prevent and limit the spread of pathogens resistant to antimicrobial agents is the use of targeted bacterial drugs — probiotics. Veterinary probiotics based on genetically modified microorganisms can be used for the treatment and prophylaxis of infectious diseases in farm animals. We demonstrated the antagonistic effect of the genetically modified Escherichia coli ŽP strain against agents of avian colibacillosis, the avian pathogenic Escherichia coli (APEC) in both in vitro and in vivo models. The colE7 gene (colicin E7 synthesis gene) carried on a conjugative plasmid was efficiently transferred by conjugation in conditions of planktonic and biofilm growth in vitro. The E. coli ŽP strain was shown to actively colonize the intestine of rats and quails and to contribute to beneficial effects of the microbiota. Our aim was to evaluate the competitive ability of the E. coli ŽP strain as well as the efficiency of killing APEC based on the conjugative transfer of the colE7 gene, encoding a DNasae, in vitro and in vivo. We used the ColE7-mediated kill—anti-kill system based on the Nissle 1917 probiotic strain, the genetically modified E. coli ŽP strain (killer donor) carrying the colE7 gene on the conjugative plasmid pOX38a, as well as the immE7 gene (colicin E7 immunity gene) on the chromosome. As control, the E. coli N4i strain without colE7 gene on the conjugative plasmid pOX38 (control donor) was used. Six APEC strains with resistance to ampicillin isolated from organs of broilers with colibacillosis were used as recipients in performed conjugation assays. The phylogenetic group of used APEC strains was detected with quadruplex PCR. The conjugation transfer was conducted in Luria-Bertani (LB) medium in immunological polystyrene 96-walls flat bottom plates in plankton and in biofilm culture. The experiments with rats (Wistar line) and Manchurian quail (Coturnix coturnix) were conducted in the vivarium of the Wagner Perm State Medical University. The competitive ability of E. coli ŽP strain was confirmed in co-cultivation assays with APEC strains, including bacteriocin producers, in various models. Conjugative colE7 gene transfer to APEC was detected in vitro in plankton and in biofilm: in experiments with the control donor strain E. coli N4i the conjugation frequency varied from 10 -6 to10-2. In vivo, it was shown that E. coli ŽP strain was able to effectively colonize the rat (line Wistar) and Manchurian quail (Coturnix coturnix) intestine and persist there at least for a month. Introduced E. coli ŽP cells increased the total amount of commensal Escherichia in the intestine of the animals and reduced the growth of the pathogenic microbes without affecting the lactic acid bacteria. The transfer ability of the conjugative plasmid pOX38 in the intestinal tract of both animal species was demonstrated. The conjugation in the intestinal tract occurred with a high frequency, on average 10-2. No transconjugants were detected in both in vitro and in vivo experiments with the E. coli ŽP strain harboring the conjugative plasmid pOX38a; the recipient cells that received the colE7 gene via the conjugative transfer expressed it and were lysed due to the colicin DNase activity. This was reflected in the number of APEC recipient cells, it was namely reduced in the assays with the ŽP strain. The results obtained indicated that the E. coli ŽP strain was able to colonize the intestine of animals and had antibacterial activity against enteropathogens due to the conjugative mechanism of colicin gene transfer. As the ŽP strain was also effective on APEC cells that were resistant and tolerant to bacteriocins, it has the potential to become the basis for a highly effective new generation of probiotics.

Keywords: colicins, СolE7, conjugative transfer, kill—anti-kill system, antibiotic alternative, probiotics, avian pathogenic Escherichia coli (APEC), animal models.

 

REFERENCES

  1. Fisinin V.I. Materialy XIX Mezhdunarodnoi konferentsii «Mirovye i rossiiskie trendy razvitiya ptitsevodstva: realii i vyzovy budushchego» [Proc. XIX Int. Conf. «World and Russian poultry development trends: realities and future challenges»]. Sergiev Posad, 2018: 9-48 (in Russ.).
  2. Nefedova V.N., Maiorova S.V. Ekonomika i Biznes: teoriya i praktika, 2017, 8: 60-64 (in Russ.).
  3. Mezentsev S.V., Telegin N.G. BIO, 2004, 10: 5-8 (in Russ.).
  4. Miles T.D., McLaughlin W., Brown P.D. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Veterinary Research, 2006, 2(7): 1-9 CrossRef
  5. Koga V.L., Rodrigues G.R., Scandorieiro S., Vespero E.C., Oba A., de Brito B.G., de Brito K.C.T., Nakazato G., Kobayashi R.K.T. Evaluation of the antibiotic resistance and virulence of Escherichia coli strains isolated from chicken carcasses in 2007 and 2013 from Parana, Brazil. Foodborne Pathogens and Disease, 2015, 12(6): 479-485 CrossRef
  6. Mora A., Viso S., López C., Alonso M.P., García-Garrote F., Dabhi G., Mamani R., Herrera A., Marzoa J., Blanco M., Blanco J.E., Moulin-Schouleur M., Schouler C., Blanco J. Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans. Veterinary Microbiology, 2013, 167(3-4): 506-612 CrossRef
  7. Antimicrobial resistance: Global report on surveillance. WHO Library Cataloguing-in-Publication Data, 2014.
  8. Proekt Rasporyazheniya Pravitel'stva Rossiiskoi Federatsii «Ob utverzhdenii Strategii preduprezhdeniya i preodoleniya ustoichivosti mikroorganizmov i vrednykh organizmov rastenii k lekarstvennym preparatam, khimicheskim i biologicheskim sredstvam na period do 2030 goda i dal'neishuyu perspektivu» (podgotovlen Minzdravom Rossii 08.06.2017) [Draft Order of the Government of the Russian Federation «On approval of the Strategy for preventing and overcoming the resistance of microorganisms and pests of plants to drugs, chemical and biological agents for the period up to 2030 and beyond» (prepared by the Ministry of Health of Russia on 08.06.2017)] (in Russ.).
  9. Jadhav K., Sharma K.S., Katoch S., Sharma V.K., Mane B.G. Probiotics in broiler poultry feeds: a review. International Journal of Animal and Veterinary Science, 2015, 2: 4-16.
  10. Bidarkar V.K., Swain P.S., Ray S., Dominic G. Probiotics: potential alternative to antibiotics in ruminant feeding. Trends in Veterinary and Animal Sciences, 2014, 1: 1-4.
  11. Parker R.B. Probiotics the other half of the antibiotics story. Animal Nutrition and Health, 1974, 29: 4-8.
  12. Kavitha R.B., Desai J., Deepika Reddy A.R., Radhakrishna P.M. Effect of probiotics supplementation on the performance of broilers. Indian Journal of Animal Nutrition, 2007, 24(3): 142-146.
  13. Rozhdestvenskaya T.N., Yakovlev S.S., Kononenko E.V. Zhivotnovodstvo, 2012, 1(1): 54-56 (in Russ.).
  14. Sushkova V.I., Ustyuzhaninova L.V. Kormoproizvodstvo, 2017, 3: 34-40 (in Russ.).
  15. Higgins J.P., Higgins S.E., Vicente J.L., Wolfenden A.D., Tellez G., Hargis B.M. Temporal effects of lactic acid bacteria probiotic culture on Salmonella in neonatal broilers. Poultry Science, 2007, 86(8): 1662-1666 CrossRef
  16. Starovoitova S.A., Skrotskaya O.I. Probiotiki na osnove transgennykh mikroorganizmov. Biotechnologia Acta, 2013, 6(1): 34-45 (in Russ.).
  17. Lebedeva I.A., Prokkoeva Zh.A., Shchepetkina S.V. MaterialyMezhdunarodnoinauchno-prakticheskoikonferentsii  «BiotekhnologiyaiobshchestvovXXIveke» [Proc. Int. Conf. «Biotechnology and society in the 21st century»]. Barnaul, 2015: 370-374 (in Russ.).
  18. Crittenden R., Bird A.R., Gopal P., Henriksson A., Lee Y.K., Playne M.J. Probiotic research in Australia, New Zealand and the Asia-Pacific region. Current Pharmaceutical Design, 2005, 11(1): 37-53 CrossRef
  19. Ushakova N.A., Nekrasov R.V., Pravdin V.G., Kravtsova L.Z., Bobrovskaya O.I., Pavlov D.S. Fundamental'nye issledovaniya, 2012, 1: 184-192 (in Russ.).
  20. Livshits V.A., Chesnokova V.L., Aleshin V.V., Sokurenko E.V., Dalin M.V., Kravtsov E.G., Bykov V.A. Shtamm bakterii Escherichiacolim17 fimh::kan/pcolap, ispol'zuemyi dlya polucheniya probioticheskogo preparata. (RF) MPK7 C 12 N 1/21, A 61 K 35/74. № 2144954. Zayavl. 15.01.98. Opubl. 27.01.2000 [The bacterial strain Escherichia coli m17 fimh::kan/p colap used to obtain the probiotic preparation. (RF) MPK7 C 12 N 1/21, A 61 K 35/74. № 2144954. Appl. 15.01.98. Publ. 27.01.2000](in Russ.).
  21. Sokolova N.A., Khmel' I.A., Shegidevich E.A. Veterinariya, 2001, 11: 46-49 (in Russ.).
  22. Budič M., Rijavec M., Petkovšek Ž., Žgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS ONE, 2011, 6(12): e28769 CrossRef
  23. Filutowicz M., Burgess R., Gamelli R.L., Heinemann J.A., Kurenbach B., Rakowski S.A., Shankar R. Bacterial conjugation-based antimicrobial agents. Plasmid, 2008, 60(1): 38-44 CrossRef
  24. Maslennikova I.L., Kuznetsova M.V., Toplak N., Nekrasova I.V., Žgur-Bertok D., Starčič Erjavec M. Estimation of the bacteriocin ColE7 conjugation-based «kill»—«anti-kill» antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays. Letters in Applied Microbiology, 2018, 67(1): 47-53 CrossRef
  25. Starčič Erjavec M., Petkovšek Z., Kuznetsova M.V., Maslennikova I.L., Žgur-Bertok D. Strain ŽP — the first bacterial conjugation-based «kill»—«anti-kill» antimicrobial system. Plasmid, 2015, 82: 28-34 CrossRef
  26. Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 1991, 19(24): 6823-6831 CrossRef
  27. Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 2013, 5(1): 58-61 CrossRef
  28. Guglielmetti E., Korhonen J.M., Heikkinen J., Morelli L., von Wright A. Transfer of plasmid-mediated resistance to tetracycline in pathogenic bacteria from fish and aquaculture environments. FEMS Microbiology Letters, 2009, 293(1): 28-34 CrossRef
  29. Merritt J.H., Kadouri D.E., O’Toole G.A. Growing and analyzing static biofilm. Current Protocols in Microbiology, 2005, 00(1): 1B.1.1-1B.1.18 CrossRef
  30. GOST 34088-2017. Rukovodstvo po soderzhaniyu i ukhodu za laboratornymi zhivotnymi. Pravila soderzhaniya i ukhoda za sel'skokhozyaistvennymi zhivotnymi [GOST 34088-2017. Guidelines for the maintenance and care of laboratory animals. Rules for keeping and caring for farm animals]. Moscow, 2018 (in Russ.).
  31. Gillor O., Kirkup B.C., Riley M.A. Colicins and microcins: the next generation of antimicrobials. Advances in Applied Microbiology, 2004, 54: 129-146 CrossRef
  32. Karimi Torshizi M.A., Rahimi S.H., Mojgani N., Esmaeilkhanian S., Grimes J.L. Screening of indigenous strains of lactic acid bacteria for development of a probiotic for poultry. Asian-Australasian Journal of Animal Science, 2008, 21(10): 1495-1500 CrossRef
  33. Ogunbanwo S.T., Sanni A.I., Onilude A.A. Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World Journal of Microbiology and Biotechnology, 2004, 20(1): 51-56 (doi: 10.1023/B:WIBI.0000013311.43842.74">CrossRef
  34. Tarakanov B.V. Shtamm bakterii Escherichia coli, ispol'zuemyi dlya proizvodstva probiotika mikrotsikola V5/98. (RF) MPK C 12 N 1/20, A 61 K 35/74, C 12 R 1/19. № 2268297. Zayavl. 29.12.03. Opubl. 20.01.06. Byull. № 02 [The bacterial strain Escherichia coli used to produce the probiotic microcycol B5/98.(RF) MPK C 12 N 1/20, A 61 K 35/74, C 12 R 1/19. № 2268297. Appl. 29.12.03. Publ. 20.01.06. Bull. № 02] (in Russ.).
  35. Tarakanov B.V., Aleshin V.V., Nikolicheva T.A., Polyakova L.L., Yakovleva A.A., Nikulin V.N., Palagina T.E. Problemy biologii produktivnykh zhivotnykh, 2008, 1: 20-36 (in Russ.).
  36. Stahl C.H., Callaway T.R., Lincoln L.M., Lonergan S.M., Genovese K.J. Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine. Antimicrobial Agents and Chemotherapy, 2004, 48(8): 3119-3121 CrossRef
  37. Cutler S.A., Lonergan S.M., Cornick N., Johnson A.K., Stahl C.H. Dietary inclusion of colicin E1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs. Antimicrobial Agents and Chemotherapy, 2007, 51(11): 3830-3835 CrossRef
  38. Sonnenborn U. Escherichia coli strain Nissle 1917 — from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiology Letters, 2016, 363(19): fnw212 CrossRef
  39. Chua K.J., Kwok W.C., Aggarwal N., Sun T., Chang M.W. Designer probiotics for the prevention and treatment of human diseases. Current Opinion in Chemical Biology, 2017, 40: 8-16 CrossRef
  40. Álvarez B., Fernández L.A. Sustainable therapies by engineered bacteria. Microbiology and Biotechnology, 2017, 10(5): 1057-1061 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)