PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.2.243eng

UDC: 636.4.033:636.012:577.2

Supported financially by Russian Science Foundation, project No. 19-16-00109

 

IDENTIFICATION OF «SELECTION SIGNATURES» IN PIGS AND WILD BOARS (review)

L.V. Getmantseva1, A.A. Traspov1, N.F. Bakoev1, Yu.A. Prytkov1, S.Yu. Bakoev1, L.V. Petrikeeva1, 2, O.V. Kostyunina1

1Ernst Federal Science Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail ilonaluba@mail.ru (✉ corresponding author), nkvdeshnik@mail.ru, nekruz82@mail.ru, prytkov_y@mail.ru, siroj1@yandex.ru;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail ulreeka@gmail.com

ORCID:
Getmantseva L.V. orcid.org/0000-0003-1868-3148
Bakoev S.Yu. orcid.org/0000-0002-0324-3580
Traspov A.A. orcid.org/0000-0003-1618-2577
Petrikeeva L.V. orcid.org/0000-0001-9663-7978
Bakoev N.F. orcid.org/0000-0001-5495-8191
Kostyunina O.V. orcid.org/0000-0001-8206-3221
Prytkov Yu.A. orcid.org/0000-0003-0843-1297

Received February 17, 2020

 

The pig is one of the few species that has living wild ancestors, which provides a unique opportunity to track the evolutionary history of mammals and determine the “selection signatures” caused by both domestication and natural selection (K. Chen et al., 2007). Animal selection leads to changes in certain regions in the genome associated with economically significant traits, adaptation to climate and stress conditions, immune response and resistance to diseases, and as a result of its pressure, traces are formed in the genome of animals (S.R. Keller et al., 2008), known as selection signatures (M. Kreitman, 2000). Identification of selection prints attracts special attention of evolutionary geneticists, since it can serve as a source of information, ranging from basic knowledge about evolutionary processes to functional information about genes/genomic regions (C. Schlötterer, 2003; C. Horscroft et al.). The purpose of this review is to summarize approaches used to identify “selection signatures”, as well as to analyze the detected traces of selection in domestic pigs and wild boar. The development of modern methods of full-scale research has significantly expanded the arsenal of tools that allow searching for regions subjected to selection pressure at a fundamentally new level. Analysis of data obtained using full-genome resequencing (C.J. Rubin et al., 2012; X. Li et al., 2017), full-genome genotyping on biochips of different densities (M. Huang et al., 2020; M. Muñoz et al., 2019), RADseq (Y. Li et al., 2017), RNA-seq (M. Li et al., 2017; Y. Yang et al., 2018), GBS (Y. Ma et al., 2018; K. Wang et al., 2018) is used to search for selection prints in Sus scrofa. Methods are based on scanning areas of homozygosity, as well as evaluating differences in the frequency of alleles or haplotypes between populations or generations within a population. The most commonly used statistical methods for identifying selection prints are extended haplotypic homozygosity (EHH) (P.C. Sabeti et al., 2002), integrated haplotype estimation (iHS) (B.F. Voight et al., 2006), runs of homozygous segments (ROH) (J. Gibson et al., 2006), FST-statistics (R.C. Lewontin, J. Krakauer, 1973), haplotype-based analysis (hapFLK) (M.I. Fariello et al., 2013), composite selection signal method (CSS) (I.A. Randhawa et al., 2014), and a combination of these methods. Breeding models in pig breeds differ depending on their evolution and breeding history, so studying the “selection signatures” of a large number of different breeds will help to better understand the genetic variations underlying the traits of interest. Based on these methods, large-scale fingerprint scans of diversifying selection have been successfully applied to domestic pigs. In most cases, the research was aimed at studying the evolutionary and selection mechanisms of the genome of Chinese pigs (X. Li et al., 2017; M. Chen et al., 2018). The research found genomic regions that contribute to adaptation to various climatic conditions (R.J. Cesconeto et al., 2017), as well as candidate genes associated with growth, development (K. Wang et al., 2018), reproductive traits (Z. Zhang et al., 2018) and certain aspects of the immune response (S. Yang et al., 2014). Full-genomic research of domestic resources (A. Traspov et al., 2016) showed that pig populations bred on the territory of the Russian Federation, including local ones, are a cultural achievement of domestic animal science and have their own unique structure, even though they originated with the participation of imported breeds. This may be due to several factors, including differences in origin, long periods of genetic isolation, and differences in climate and food resources. However, domestic breeding resources remain poorly studied at the moment. Thus, the proposed approaches designed to identify “selection signatures” in pigs bred on the territory of the Russian Federation and wild boar can be used to search and analyze the detected traces of selection in domestic pigs and wild boar of domestic origin.

Keywords: pigs, selection prints, domestication, genome-wide genotyping, haplotype, homozygosity.

 

REFERENCES

  1. Warr A., Affara N., Aken B., Beiki H., Bickhart D.M., Billis K., Chow W., Eory L., Finlayson H.A., Flicek P., Girón C.G., Griffin D.K., Hall R., Hannum G., Hourlier T., Howe K., Hume D.A., Izuogu O., Kim K., Koren S., Liu H., Manchanda N., Martin F.J., Nonneman D.J., O’Connor R.E., Phillippy A.M., Rohrer G.A., Rosen B.D., Rund L.A., Sargent C.A., Schook L.B., Schroeder S.G., Schwartz A.S., Skinner B.M., Talbot R., Tseng E., Tuggle C.K., Watson M., Smith T.P.L., Archibald A.L. An improved pig reference genome sequence to enable pig genetics and genomics research. bioRxiv, 2019: 668921 CrossRef
  2. Chen K., Baxter T., Muir W.M., Groenen M.A., Schook L.B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int. J. Biol. Sci., 2007, 3(3): 153-165 CrossRef
  3. Alachiotis N., Pavlidis P. Scalable linkage-disequilibriumbased selective sweep detection: a performance guide. GigaScience, 2016, 5(1): s13742-016-0114-9 CrossRef
  4. Nielsen R. Molecular signatures of natural selection. Annual Review of Genetics, 2005, 39(1): 197-218 CrossRef
  5. de Simoni Gouveia J.J., da Silva M.V.G.B., Paiva S.R., de Oliveira S.M.P. Identification of selection signatures in livestock species. Genet. Mol. Biol., 2014, 37(2): 330-342 CrossRef
  6. Keller S.R., Taylor D.R. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecology Letters, 2008, 11(8): 852-866 CrossRef
  7. Kreitman M. Methods to detect selection in populations with applications to the human. Annual Review of Genomics and Human Genetics, 2000, 1: 539-559 CrossRef
  8. Schlötterer C. Hitchhiking mapping-functional genomics from the population genetics perspective. Trends in Genetics, 2003, 19(1): 32-38 CrossRef
  9. Horscroft C., Ennis S., Pengelly R.J., Sluckin T.J., Collins A. Sequencing era methods for identifying signatures of selection in the genome. Briefings in Bioinformatics, 2019, 20(6): 1997-2008 CrossRef
  10. Ceballos F.C., Joshi P.K., Clark D.W., Ramsay M., Wilson J.F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet., 2018, 19: 220-234 CrossRef
  11. Zhang Z., Jia Y., Almeida P., Mank J.E., van Tuinen M., Wang Q., Jiang Z., Chen Y., Zhan K., Hou S., Zhou Z., Li H., Yang F., He Y., Ning Z., Yang N., Qu L. Whole-genome resequencing reveals signatures of selection and timing of duck domestication. GigaScience, 2018, 7(4): giy027 CrossRef
  12. Larson G., Dobney K., Albarella U., Fang M., Matisoo-Smith E., Robins J., Lowden S., Finlayson H., Brand T., Willerslev E., Rowley-Conwy P., Andersson L., Cooper A. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 2005, 307(5715): 1618-1621 CrossRef
  13. Rubin C.-J., Megens H.-J., Barrio A.M., Maqbool K., Sayyab S., Schwochow D., Wang C., Carlborg Ö., Jern P., Jørgensen C.B., Archibald A.L., Fredholm M., Groenen M.A.M., Andersson L. Signatures of selection in the pig genome. Proceedings of the National Academy of Sciences, 2012, 109(48): 19529-19536 CrossRef
  14. Li X., Su R., Wan W., Zhang W., Jiang H., Qiao X., Fan Y., Zhang Y., Wang R., Liu Z., Wang Z., Liu B., Ma Y., Zhang H., Zhao Q., Zhong T., Di R., Jiang Y., Chen W., Wang W., Dong Y., Li J. Identification of selection signals by large-scale whole-genome resequencing of cashmere goats. Sci. Rep., 2017, 7: 15142 CrossRef
  15. Huang M., Yang B., Chen H., Zhang H., Wu Z., Ai H., Ren J., Huang L. The fine‐scale genetic structure and selection signals of Chinese indigenous pigs. Evol. Appl.,2020, 13(2): 458-475 CrossRef
  16. Muñoz M., Bozzi R., García-Casco J. Núñez Y., Ribani A., Franci O., García F., Škrlep M., Schiavo G., Bovo S., Utzeri V.J., Charneca R., Martins J.M., Quintanilla R., Tibau J., Margeta V., Djurkin-Kušec I., Mercat M.J., Riquet J., Estellé J., Zimmer C., Razmaite V., Araujo J.P., Radović Č., Savić R., Karolyi D., Gallo M., Čandek-Potokar M., Fernández A.I., Fontanesi L., Óvilo C. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci. Rep., 2019, 9: 13546 CrossRef
  17. Faria D.A., Wilson C., Paiva S. Blackburn H.D. Assessing Sus scrofa diversity among continental United States, and Pacific islands populations using molecular markers from a gene banks collection. Sci. Rep., 2019, 9: 3173 CrossRef
  18. Diao S., Huang S., Chen Z., Teng J., Ma Y., Yuan X., Chen Z., Zhang H., Li J., Zhang Z. Genome-wide signatures of selection detection in three south china indigenous pigs. Genes, 2019, 10(5): 346 CrossRef
  19. Yang S., Li X., Li K., Fan B., Tang Z. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genet., 2014, 15: 7 CrossRef
  20. Wilkinson S., Lu Z.H., Megens H.-J., Archibald A.L., Haley C., Jackson I.J., Groenen M.A.M., Crooijmans R.P.M.A., Ogden R., Wiener P. Signatures of diversifying selection in European pig breeds. PLoS Genet., 2013, 9(4): e1003453 CrossRef
  21. Li X., Yang S., Dong K., Tang Z., Li K., Fan B., Wang Z., Liu B. Identification of positive selection signatures in pigs by comparing linkage disequilibrium variances. Anim. Genet., 2017, 48(5): 600-605 CrossRef
  22. Li Y., Miao Z.-P., Meng X.-Y., Yang M.-M., Wei Q., Guo X.-F., Zheng H., Fang M. The application of RAD-seq technology on genomic selection of fertility traits for large white pigs (Sus scrofa). Journal of Agricultural Biotechnology, 2017, 25(9): 1508-1515 CrossRef
  23. Li M., Chen L., Tian S., Lin Y., Tang Q., Zhou X., Li D., Yeung C.K.L., Che T., Jin L., Fu Y., Ma J., Wang X., Jiang A., Lan J., Pan Q., Liu Y., Luo Z., Guo Z., Liu H., Zhu L., Shuai S., Tang G., Zhao J., Jiang Y., Bai L., Zhang S., Mai M., Li C., Wang D., Gu Y., Wang G., Lu H., Li Y., Zhu H., Li Z., Li M., Gladyshev V.N., Jiang Z., Zhao S., Wang J., Li R., Li X. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res., 2017, 27: 865-874 CrossRef
  24. Yang Y., Adeola A.C., Xie H.B., Zhang Y.P. Genomic and transcriptomic analyses reveal selection of genes for puberty in Bama Xiang pigs. Zoological Research, 2018, 39(6): 424-430 CrossRef
  25. Wang K., Wu P., Yang Q., Chen D., Zhou J., Jiang A., Ma J., Tang Q., Xiao W., Jiang Y., Zhu L., Li X., Tang G. Detection of selection signatures in chinese landrace and Yorkshire pigs based on genotyping-by-sequencing data. Frontiers in Genetics, 2018, 9: 119 CrossRef
  26. Ma Y., Zhang S., Zhang K., Fang C., Xie S., Du X., Li X., Ni D., Zhao S. Genomic analysis to identify signatures of artificial selection and loci associated with important economic traits in Duroc pigs. G3: Genes, Genomes, Genetics, 2018, 8(11): 3617-3625 CrossRef
  27. Charlesworth B., Charlesworth D., Barton N.H. The effects of genetic and geographic structure on neutral variation. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 99-125 CrossRef
  28. Petersen J.L., Mickelson J.R., Rendahl A.K., Valberg S.J., Andersson L.S., Axelsson J., Bailey E., Bannasch D., Binns M.M., Borges A.S., Brama P, da Câmara Machado A., Capomaccio S., Cappelli K., Cothran E.G., Distl O., Fox-Clipsham L., Graves K.T., Guérin G., Haase B., Hasegawa T., Hemmann K., Hill E.W., Leeb T., Lindgren G., Lohi H., Lopes M.S., McGivney B.A., Mikko S., Orr N., Penedo M.C., Piercy R.J., Raekallio M., Rieder S., Røed K.H., Swinburne J., Tozaki T., Vaudin M., Wade C.M., McCue M.E. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet., 2013, 9(1): e1003211 CrossRef
  29. Weigand H., Leese F. Detecting signatures of positive selection in non-model species using genomic data. Zoological Journal of the Linnean Society, 2018, 184(2): 528-583 CrossRef
  30. Almeida O.A.C., Moreira G.C.M., Rezende F.M., Boschiero C., de Oliveira Peixoto J., Ibelli A.M.G., Ledur M.C., de Novais F.J., Coutinho L.L. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, 2019, 20: 449 CrossRef
  31. Sabeti P.C., Reich D.E., Higgins J.M., Levine H.Z.P., Richter D.J., Schaffner S.F., Gabriel S.B., Platko J.V., Patterson N.J., McDonald G.J., Ackerman H.C., Campbell S.J., Altshuler D., Cooper R., Kwiatkowski D., Ward R., Lander E.S. Detecting recent positive selection in the human genome from haplotype structure. Nature, 2002, 419: 832-837 CrossRef
  32. Zhong M., Zhang Y., Lange K., Fan R. A cross-population extended haplotype-based homozygosity score test to detect positive selection in genome-wide scans. Statistics and Its Interface, 2011, 4(1): 51-63 CrossRef
  33. López M.E., Linderoth T., Norris A., Lhorente J.P., Neira R., Yáñez J.M. Multiple selection signatures in farmed atlantic salmon adapted to different environments across hemispheres. Front. Genet., 2019, 10: 901 CrossRef
  34. Voight B.F., Kudaravalli S., Wen X., Pritchard J.K. A map of recent positive selection in the human genome. PLoS Biol., 2006, 4(3): e72 CrossRef
  35. Gibson J., Morton N.E., Collins A. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics,2006, 15(5): 789-795 CrossRef
  36. Curik I., Ferenčaković M., Sölkner J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock Science, 2014, 166: 26-34 CrossRef
  37. Bosse M., Megens H.-J., Madsen O., Paudel Y., Frantz L.A.F., Schook L.B., Cro-oijmans R.P.M.A., Groenen M.A.M. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet., 2012, 8(11): e1003100 CrossRef
  38. Peripolli E., Munari D.P., Silva M., Lima A.L.F., Irgang R., Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet., 2017, 48(3): 255-271 CrossRef
  39. Lohmueller K.E., Albrechtsen A., Li Y., Kim S.Y., Korneliussen T., Vinckenbosch N., Tian G., Huerta-Sanchez E., Feder A.F., Grarup N., Jørgensen T., Jiang T., Witte D.R., Sandbæk A., Hellmann I., Lauritzen T., Hansen T., Pedersen O., Wang J., Nielsen R. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet., 2011, 7(10): e1002326. CrossRef
  40. Andolfatto P. Adaptive evolution of non-coding DNA in Drosophila. Nature, 2005, 437: 1149-1152 CrossRef
  41. Avila F., Mickelson J.R., Schaefer R.J., McCue M.E. Genome-wide signatures of selection reveal genes associated with performance in American quarter horse subpopulations. Frontiers in Genetics, 2018, 9: 249 CrossRef
  42. Mauch E. The genetic basis of feed efficiency in swine divergently selected for residual feed intake. Graduate Theses and Dissertations. 16406. Iowa State University, 2018 CrossRef
  43. Bertolini F., Servin B., Talenti A., Rochat E., Kim E.S., Oget C., Palhière I., Crisà A., Catillo G., Steri R., Amills M., Colli L., Marras G., Milanesi M., Nicolazzi E., Rosen B.D., Van Tassell C.P., Guldbrandtsen B., Sonstegard T.S., Tosser-Klopp G., Stella A., Rothschild M.F., Joost S., Crepaldi P., the AdaptMap consortium. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol., 2018, 50: 57 CrossRef
  44. Fariello M.I., Boitard S., Naya H., SanCristobal M., Servin B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 2013, 193(3): 929-941 CrossRef
  45. Randhawa I.A.S., Khatkar M.S., Thomson P.C., Raadsma H.W. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep. BMC Genet., 2014, 15: 34 CrossRef
  46. Randhawa I.A., Khatkar M.S., Thomson P.C., Raadsma H.W. Composite selection signals for complex traits exemplified through bovine stature using multibreed cohorts of European and African Bos taurus. G3: Genes, Genomes, Genetics, 2015, 5(7): 1391-1401 CrossRef
  47. Ma Y., Ding X., Qanbari S., Weigend S., Zhang Q., Simianer H. Properties of different selection signature statistics and a new strategy for combining them. Heredity, 2015, 115: 426-436 CrossRef
  48. Lewontin R.C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 1973, 74(1): 175-195.
  49. Wright S. The genetical structure of populations. Annals of Eugenic, 1951, 15(1): 323-354 CrossRef
  50. Weir B.S. Estimating F-statistics: a historical view. Philosophy of Science, 2012, 79(5): 637-643 CrossRef
  51. Akey J.M., Zhang G., Zhang K., Jin L., Shriver M.D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res., 2002, 12(12): 1805-1814 CrossRef
  52. Chen M., Pan D., Ren H., Fu J., Li J., Su G., Wang A., Jiang L., Zhang Q., Liu J.-F. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations. Genet. Sel. Evol., 2016, 48: 76 CrossRef
  53. Lim D., Strucken E.M., Choi B.H., Chai H.H., Cho Y.M., Jang G.-W., Kim T.H., Gondro C., Lee S.H. Genomic footprints in selected and unselected beef cattle breeds in Korea. PLoS ONE, 2016, 11(3): e0151324 CrossRef
  54. Wragg D., Marti-Marimon M., Basso B., Bidanel J.P., Labarthe E., Bouchez O, Le Conte Y., Vignal A. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly. Scientific Reports, 2016, 6: 27168 CrossRef
  55. Yuan Z., Liu E., Liu Z., Kijas J.W., Zhu C., Hu S., Ma X., Zhang L., Du L., Wang H., Wei C. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet., 2017, 48(1): 55-66 CrossRef
  56. Yang H., Lohmann G., Wei W., Dima M., Ionita M., Liu J. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 2016, 121(7): 4928-4945 CrossRef
  57. Ai H., Fang X., Yang B., Huang Z., Chen H., Mao L., Zhang F., Zhang L., Cui L., He W., Yang J., Yao X., Zhou L., Han L., Li J., Sun S., Xie X., Lai B., Su Y., Lu Y., Yang H., Huang T., Deng W., Nielsen R,. Ren J., Huang L. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet., 2015, 47(3): 217-225 CrossRef
  58. Amaral A.J., Ferretti L., Megens H.-J., Crooijmans R.P., Nie H., Ramos-Onsins S.E., Perez-Enciso M., Schook L.B., Groenen M.A.M. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS ONE, 2011, 6(4): e14782 CrossRef
  59. Ai H., Huang L., Ren J. Genetic diversity, linkage disequilibrium and selection signatures in Chinese and Western pigs revealed by genome-wide SNP markers. PLoS ONE, 2013, 8(2): e56001 CrossRef
  60. Ma Y., Zhang H., Zhang Q., Ding X. Identification of selection footprints on the X chromosome in pig. PLoS ONE, 2014, 9(4): e94911 CrossRef
  61. Gurgul A., Jasielczuk I., Ropka-Molik K., Semik-Gurgul E., Pawlina-Tyszko K., Szmatoła T., Szyndler-Nędza M., Bugno-Poniewierska M., Blicharski T., Szulc K., Skrzypczak E., Krupiński J. A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. BMC Genet., 2018, 19: 95 CrossRef
  62. Wang Z., Chen Q., Yang Y., Yang H., He P., Zhang Z., Chen Z., Liao R., Tu Y., Zhang X., Wang Q., Pan Y. A genome-wide scan for selection signatures in Yorkshire and Landrace pigs based on sequencing data. Anim. Genet., 2014, 45(6): 808-816 CrossRef
  63. Zhao F., McParland S., Kearney F., Du L., Berry D.P. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Sel. Evol., 2015, 47: 49 CrossRef
  64. Biswas S., Akey J.M. Genomic insights into positive selection. Trends in Genetics, 2006, 22(8): 437-446 CrossRef
  65. Li X., Yang S., Dong K., Tang Z., Li K., Fan B., Wang Z., Liu B. Identification of positive selection signatures in pigs by comparing linkage disequilibrium variances. Anim. Genet., 2017, 48(5): 600-605 CrossRef
  66. Teo Y.Y., Fry A.E., Bhattacharya K., Small K.S., Kwiatkowski D.P., Clark T.G. Genome-wide comparisons of variation in linkage disequilibrium. Genome Res., 2009, 19: 1849-1860 CrossRef
  67. Groenen M.A.M., Archibald A.L., Uenishi H., Tuggle C.K., Takeuchi Y., Rothschild M.F., Rogel-Gaillard C., Park C., Milan D., Megens H.-J., Li S., Larkin D.M., Kim H., Frantz L.A.F., Caccamo M., Ahn H., Aken B.L., Anselmo A., Anthon C., Auvil L., Badaoui B., Beattie C.W., Bendixen C., D. Berman, Blecha F., Blomberg J., Bolund L., Bosse M., Botti S., Bujie Z., Bystrom M., Capitanu B., Carvalho-Silva D., Chardon P., Chen C., Cheng R., Choi S.-H., Chow W., Clark R.C., Clee C., Crooijmans R.P.M.A., Dawson H.D., Dehais P., De Sapio F., Dibbits B., Drou N., Du Z.-Q., Eversole K., Fadista J., Fairley S., Faraut T., Faulkner G.J., Fowler K.E., Fredholm M., Fritz E., Gilbert J.G.R., Giuffra E., Gorodkin J., Griffin D.K., Harrow J.L., Hayward A., Howe K., Hu Z.-L., Humphray S.J., Hunt T., Hornshøj H., Jeon J.-T., Jern P., Jones M., Jurka J., Kanamori H., Kapetanovic R., Kim J., Kim J.-H., Kim K.-W., Kim T.-H., Larson G., Lee K., Lee K.-T., Leggett R., Lewin H.A., Li Y., Liu W., Loveland J.E., Lu Y., Lunney J.K., Ma J., Madsen O., Mann K., Matthews L., McLaren S., Morozumi T., Murtaugh M.P., Narayan J., Truong Nguyen D., Ni P., Oh S.-J., Onteru S., Panitz F., Park E.-W., Park H.-S., Pascal G., Paudel Y., Perez-Enciso M., Ramirez-Gonzalez R., Reecy J.M., Rodriguez-Zas S., Rohrer G.A., Rund L., Sang Y., Schachtschneider K., Schraiber J.G., Schwartz J., Scobie L., Scott C., Searle S., Servin B., Southey B.R., Sperber G., Stadler P., Sweedler J.V., Tafer H., Thomsen B., Wali R., Wang J., Wang J., White S., Xu X., Yerle M., Zhang G., Zhang J., Zhang J., Zhao S., Rogers J., Churcher C., Schook L.B. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393-398 CrossRef
  68. Mikawa S., Morozumi T., Shimanuki S., Hayashi T., Uenishi H., Domukai M., Okumura N., Awata T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res., 2007, 17(5): 586-593 CrossRef
  69. Li J., Yang H., Li J.R., Li H.P., Ning T., Pan X.R., Shi P., Zhang Y.P.: Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity, 2010, 105(3): 274-281 CrossRef
  70. Chaffee R.R., Kaufman W.C., Kratochvil C.H., Sorenson M.W., Conaway C.H., Middleton C.C. Comparative chemical thermoregulation in cold- and heat-acclimated rodents, insectivores, protoprimates, and primates. Federation Proceedings, 1969, 28(3): 1029-1034.
  71. Keatinge W.R., Coleshaw S.R.K., Easton J.C., Cotter F., Mattock M.B., Chelliah R. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. The American Journal of Medicine, 1986, 81(5): 795-800 CrossRef
  72. Cesconeto R.J., Joost S., McManus C.M., Paiva S.R., Cobuci J.A., Braccini J. Landscape genomic approach to detect selection signatures in locally adapted Brazilian swine genetic groups. Ecol. Evol., 2017, 7(22): 9544-9556 CrossRef
  73. Perez-Enciso M., Burgos-Paz W., Souza C.A., Megens H.J., Ramayo-Caldas Y., Melo M., Lemús-Flores C., Caal E., Soto H.W., Álvarez L.A., Aguirre L., Iñiguez V., Revidatti M.A., Martínez-López O.R., Llambi S., Esteve-Codina A., Rodríguez M.C., Crooijmans R.P.M.A., Paiva S.R., Schook L.B., Groenen M.A.M. Data from: porcine colonization of the Americas: a 60k SNP story. Dryad Data Repository, 2012 CrossRef
  74. Burgos-Paz W., Souza C.A., Megens H.J., Ramayo-Caldas Y., Melo M., Lemús-Flores C., Caal E., Soto H.W., Martínez R., Álvarez L.A., Aguirre L., Iñiguez V., Revidatti M.A., Martínez-López O.R., Llambi S., Esteve-Codina A., Rodríguez M.C., Crooijmans R.P., Paiva S.R., Schook L.B., Groenen M.A., Pérez-Enciso M. Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110: 321-330 CrossRef
  75. Uemoto Y., Nakano H., Kikuchi T., Sato S., Ishida M., Shibata T., Kadowaki H., Kobayashi E., Suzuki K. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Anim. Genet., 2012, 43(2): 225-228 CrossRef
  76. Muñoz M., Rodríguez M.C., Alves E., Folch J.M., Ibañez-Escriche N., Silió L., Fernández A.I. Genome wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics, 2013, 14: 845 CrossRef
  77. Cameron N.D., Enser M., Nute G.R., Whittington F.M., Penman J.C., Fisken A.C., Perry A.M., Wood J.D. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science, 2000, 55(2): 187-195 CrossRef
  78. Yu K., Shu G., Yuan F., Zhu X., Gao P., Wang S., Wang L., Xi Q., Zhang S., Zhang Y., Li Y., Wu T., Yuan L., Jiang Q. Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality. International Journal of Biological Sciences, 2013, 9(1): 108-118 CrossRef
  79. Nonneman D., Lents C., Rohrer G., Rempel L., Vallet J. Genome-wide association with delayed puberty in swine. Anim. Genet., 2014, 45(1): 130-132 CrossRef
  80. Weedon M.N., Lango H., Lindgren C.M., Wallace C., Evans D.M., Mangino M., Freathy R.M., Perry J.R.B., Stevens S., Hall A.S., Samani N.J., Shields B., Prokopenko I., Farrall M., Dominiczak A., Diabetes Genetics Initiative, Wellcome Trust Case Control Consortium, Johnson T., Bergmann S., Beckmann J.S., Vollenweider P., Waterworth D.M., Mooser V., Palmer C.N., Morris A.D., Ouwehand W.H., Cambridge GEM Consortium, Zhao J.H., Li S., Loos R.J., Barroso I., Deloukas P., Sandhu M.S., Wheeler E., Soranzo N., Inouye M., Wareham N.J., Caulfield M., Munroe P.B., Hattersley A.T., McCarthy M.I., Frayling T.M. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet., 2008, 40: 575-583 CrossRef
  81. Li M., Tian S., Yeung C.K., Meng X., Tang Q., Niu L., Wang X., Jin L., Ma J., Long K., Zhou C., Cao Y., Zhu L., Bai L., Tang G., Gu Y., Jiang A., Li X., Li R. Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Sci. Rep., 2014, 4: 4678 CrossRef
  82. Ramos A.M., Duijvesteijn N., Knol E.F., Merks J.W.M., Bovenhuis H., Crooijmans R.P.M.A., Groenen M.A.M., Harlizius B. The distal end of porcine chromosome 6p is involved in the regulation of skatole levels in boars. BMC Genet., 2011, 12: 35 CrossRef
  83. Jeong H., Song K.D., Seo M., Caetano-Anollés K., Kim J., Kwak W., Oh J.D., Kim E., Jeong D.K., Cho S., Kim H., Lee H.K. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing. BMC Genet., 2015, 16: 104 CrossRef
  84. Zhao X., Du Z.-Q., Vukasinovic N., Rodriguez F., Clutter A.C., Rothschild M.F. Association of HOXA10, ZFPM2, and MMP2 genes with scrotal hernias evaluated via biological candidate gene analyses in pigs. American Journal of Veterinary Research, 2009, 70(8): 1006-1012 CrossRef
  85. Rohrer G.A., Nonneman D.J., Wiedmann R.T., Schneider J.F. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet., 2015, 16: 129 CrossRef
  86. Chen M., Wang J., Wang Y., Wu Y., Fu J., Liu J. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet., 2018, 19: 31 CrossRef
  87. Zhu Y., Li W., Yang B., Zhang Z., Ai H., Ren J., Huang L. Signatures of selection and interspecies introgression in the genome of Chinese domestic pigs. Genome Biology and Evolution, 2017, 9(10): 2592-2603 CrossRef
  88. Chen L., Tian S., Jin L., Guo Z., Zhu D., Jing L., Che T., Tang Q., Chen S., Zhang L., Zhang T., Liu Z., Wang J., Li M. Genome-wide analysis reveals selection for Chinese Rongchang pigs. Front. Agr. Sci. Eng, 2017, 4(3): 319-326 CrossRef
  89. Albert F.W., Somel M., Carneiro M., Aximu-Petri A., Halbwax M., Thalmann O., Blanco-Aguiar J.A., Plyusnina I.Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Pääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet., 2012, 8(9): e1002962 CrossRef
  90. Traspov A., Deng W., Kostyunina O., Ji J., Shatokhin K., Lugovoy S., Zinovieva N., Yang B., Huang L. Population structure and genome characterization of local pig breeds in Russia, Belorussia, Kazakhstan and Ukraine. Genet. Sel. Evol., 2016, 148: 16 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)