doi: 10.15389/agrobiology.2017.2.349rus

УДК 636.084.524:637.4.04::547.396

Работа выполнена при поддержке гранта Российского научного фонда для реализации проекта 16-16-04047 «Создание функциональных яйцепродуктов, оптимизированных по параметрам метаболической адекватности и аллергенности и комплексной технологии их получения, включающей кормление птицы и переработку получаемых яиц с обогащением эссенциальными нутриентами на всех этапах процесса».

 

ПРОИЗВОДСТВО ФУНКЦИОНАЛЬНЫХ ЯИЦ. Сообщение I. РОЛЬ
ω-3-ПОЛИНЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ (обзор)

А.Ш. КАВТАРАШВИЛИ, И.Л. СТЕФАНОВА, В.С. СВИТКИН,
Е.Н. НОВОТОРОВ

Один из самых распространенных функциональных пищевых продуктов — яйцо птицы, обогащенное различными нутриентами или их комплексами (N. Shapira, 2010). Высокая скорость и гибкость метаболизма липидов у птиц позволяет довольно быстро модифицировать состав желтка, изменяя рацион кур-несушек. Особый интерес диетологов вызывают продукты, богатые ω-3-полиненасыщенными жирными кислотами (ПНЖК), прежде всего α-линоленовой (АЛК, С18:3), эйкозапентаеновой (ЭПК, С20:5) и докозагексаеновой (ДГК, С22:6), которые необходимы для развития мозга, зрительной функции, профилактики сердечно-сосудистых заболеваний и т.д. (A. Simopoulos, 2001), но дефицитны в рационах населения в большинстве стран, включая Россию. У птицы ω-3-ПНЖК из рациона через 1-2 нед устойчиво переходят в яйцо (C.O. Leskanich с соавт., 1997), но при повышении доли скармливаемых ω-3-ПНЖК возможны изменения метаболизма липидов с негативными последствиями: снижением содержания липидов в крови, повышением — в печени (вплоть до развития ее геморрагической ожиренности), их катаболизмом, уменьшением массы яиц и желтка (M.E. Van Elswyk, 1997). Кроме того, яйца, обогащенные ω-3-ПНЖК, часто имеют неприятный рыбный запах (F. Bubel с соавт., 2011). Один из источников ω-3-ПНЖК в рационах — рыбий жир маслянистых видов рыб. Он обеспечивает высокое обогащение яйца длинноцепочечными ПНЖК (прежде всего, ДГК), но их состав нестабилен, высокая степень ненасыщенности приводит к усиленному окислению, часто (даже при низких дозах) у продукта появляется рыбный запах, кроме того, есть проблемы с ценой, доступностью и экологичностью (I. Fraeye с соавт., 2012). Второй тип источников ω-3-ПНЖК — льняное семя, жмых или масло. При относительно невысоком содержании ДГК количество АЛК в них значительно (около 50 % от суммы жирных кислот), что повышает окислительную стабильность липидов желтка (в отличие от обогащения ЭПК или ДГК). Дозы 5-8 % для льняного семени или жмыха и 3 % — для масла практически не влияют на продуктивность несушек и качество яиц (E.M. Goldberg с соавт., 2013). В России из-за распространенности и низкой стоимости этих добавок их применение для обогащения яиц ω-3-ПНЖК, возможно, наиболее выгодно. Третья группа добавок — морские водоросли, но они доступны далеко не везде и пока недостаточно изучены, хотя обсуждается их потенциальная перспективность (J.H. Park с соавт., 2015). При повышении содержания ω-3-ПНЖК в кормах и продукции необходимо одновременное обогащение антиоксидантами, стабилизирующее липиды (Ch. Nimalaratne с соавт., 2015). В этом качестве наиболее изучен и, пожалуй, наиболее эффективен витамин Е. Имеющиеся данные относительно возможности получения и применения обогащенных ω-3-ПНЖК яиц зачастую противоречивы вследствие ограниченности сравниваемых показателей и сложности метаболизма липидов у птиц, поэтому необходимы углубленные исследования, а также создание международной базы первичных данных для их более эффективного анализа методами сравнительной статистики.

Ключевые слова: функциональные яйца, полиненасыщенные жирные кислоты омега-3, метаболизм липидов, льняное семя и масло, рыбий жир.

 

Полный текст

 

 

FUNCTIONAL EGG PRODUCTION. I. THE ROLE OF w-3 POLYUNSATURATED FATTY ACIDS (review)

A.Sh. Kavtarashvili, I.L. Stefanova, V.S. Svitkin, E.N. Novotorov

The world’s market of functional foodstuffs is a permanently growing sector. Functional foods should meet the nutritive requirements of the consumers and render therapeutic and/or preventive effects on human health. Functional eggs enriched with different bioactive substances are one of the most voluminous segments of this market (N. Shapira, 2010). High rate and flexibility of avian lipid metabolism allow fast modifications in egg yolk composition via corresponding alterations in the diets of laying hens. In the last decades nutritionists pay increasingly close attention to ω-3 polyunsaturated fatty acids (PUFAs), primarily α-linolenic (ALA, C18:3), eicosapentaenoic (EPA, C20:5), and docosahexaenoic (DHA, C22:6) acids due to the benefits for human health and necessity for brain development, retinal function, prevention of cardiovascular diseases, etc. (A. Simopoulos, 2001); human diets in most countries including Russia are severely deficient in these essential fatty acids. Flexibility of avian lipid metabolism allows transfer of dietary PUFAs into eggs after 1-2 weeks of feeding PUFA-enriched diets (C.O. Leskanich, R.C. Noble, 1997). However, any increase in PUFA contents in dietary lipids can lead to definite changes in lipid metabolism in layers affecting productivity and egg quality: a decrease in blood level of total fat and triacylglycerols, an increase in hepatic level and catabolism of triacylglycerols which can cause the fatty liver hemorrhagic syndrome (FLHS), as well as the decrease in yolk and egg weight (M.E. Van Elswyk, 1997). Another common problem related to egg enrichment with ω-3 PUFAs is fishy taint phenomenon: panel tests often characterize enriched eggs as smelling fish-like, and this effect deteriorates market attractiveness of these eggs (F. Bubel et al., 2011). Diets for laying hens for the production of ω-3 PUFA enriched eggs usually contain one of the three types of dietary PUFA sources. The first is fish oil from different species; its advantages include higher levels of long-chain PUFAs (LC-PUFAs), primarily EPA and DHA in resulting enriched eggs. Major disadvantages of fish oil, however, are instability of composition and high susceptibility to oxidation; frequent appearance of fishy taint even at the lowest levels of inclusion into the diets; relatively high price, market availability, and contamination with typical oceanic pollutants (I. Fraeye et al., 2012). The second type of additives is flax products, seeds, cake or oil containing substantially lesser amounts of LC-PUFAs compared to fish oil while being extremely rich in ALA (over 50 % of total fatty acids); ALA-enriched lipids in diets, layer body and eggs are more resistant to oxidation. The data of numerous studies suggests that reasonable level of inclusion of flaxseed products into the diets for layers are 5-8 % for seed and cake and 3 % for oil; these doses are reportedly beneficial for productivity and egg quality (E.M. Goldberg et al., 2013). In Russia flax products are available and inexpensive, and can therefore represent the most profitable dietary source of ω-3 PUFA for layers. The third type additives are macro- and microalgal species which are less available and still understudied, though the recent research data show that these additives can be the most promising dietary sources of ω-3 PUFA (J.H. Park et al., 2015). Enrichment of feeds and eggs with ω-3 PUFA requires additional dietary antioxidants to prevent lipid oxidation (Ch. Nimalaratne, J. Wu, 2015); the most efficient and well-studied antioxidant is vitamin E which is, after that, a valuable bioactive substance per se for egg enrichment. The data of different experiments with different ω-3 PUFA sources are often inconsistent and controversial due to the close relation to the multifaceted avian lipid metabolism, and comparative analysis of these studies is further complicated by the lack of estimated parameters; it could be helpful, therefore, to launch an international database related to these experiments and containing raw datasets which could be statistically analyzed and compared in a more efficient way.

Keywords: functional eggs, polyunsaturated fatty acids n-3, lipid metabolism, flax seed and oil, fish oil.

 

ФНЦ Всероссийский научно-исследовательский
и технологический институт птицеводства РАН
,
141311 Россия, Московская обл., г. Сергиев Посад, ул. Птицеградская, 10,
e-mail: alexk@vnitip.ru, dp.vniipp@mail.ru, 89267796966@yandex.ru,
en-5506040@mail.ru

Поступила в редакцию
30 ноября 2016 года

 

назад в начало