doi: 10.15389/agrobiology.2016.2.141eng

UDC 539.1.047:575.224

 

CHERNOBYL AND FUKUSHIMA NUCLEAR ACCIDENTS
(review)

V.I. Glazko1, 2, B.L. Zybailov3, T.T. Glazko1, 2

1K.A. Timiryazev Russian State Agrarian University—Moscow Agrarian Academy,
49, ul. Timiryazevskaya, Moscow, 127550 Russia;
2Center for Experimental Embryology and Reproductive Biotechnology, Federal Agency of Scientific Organizations,
12/4, ul. Kostyakova, Moscow, 127422 Russia,
e-mail vglazko@yahoo.com, tglazko@rambler.ru;
3University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, 72205 USA

Received January 14, 2016

 

In the review, our own studies of increased ionizing radiation effects on agricultural animals (nutria, rabbits, pigs, cattle) and small rodents of bio-indicator species after Chernobyl NPP accident are compared with published data of human populations’ survey after the accidents at Chernobyl and Fukushima nuclear power plants. Similarity is noted of main targets for ionizing radiation (the cardiovascular system and kidneys) identified in humans and agricultural animals. Effects of ionizing radiation and post-traumatic syndromes are also comparable. Biomarkers of damages caused by ionizing radiation are considered. Differences in the estimates of the thyroid gland papillary carcinoma frequency after nuclear accidents at Chernobyl and Fukushima NPPs are discussed. Apparently, this inconsistency is mainly due to genogeographic factors, iodine deficit in geochemical province, and natural selection affecting number of generations in the populations from naturally radioactive provinces or under enhanced radionuclide pollution after technological accidents (T.I. Bogdanova et al., 2015; V.M. Drozd et al., 2015; M.B. Zimmermann, V. Galetti, 2015). A non-linear dependency of biological effects of irradiation in the low dose range was analyzed with its possible mechanisms discussed (i.e. damage accumulation until the level necessary to induce DNA reparation, changes in young to old cell proportion in the populations, mitochondrial dysfunction) (E. Markievicz et al., 2015). A concept of «horizontal» and «vertical» effects of ionizing radiation on biological objects is introduced. It was shown that in different species of rodents (Microtus arvalis, Clethrionomys glareolus), and in the laboratory mice of C57BL/6, СС57W/Mv, and BALB/c lines the irradiation of bone marrow cells induced an increase of only those cytogenetic anomalies, in comparison of control groups, the increased variability of which was typical for the studied objects in a relatively clean areas. The main and, apparently, underestimated vertical consequence of raised ionizing radiation is the decrease in reproductive success of irradiated animals. Importantly, a transgenerational transmission of post-traumatic syndrome and its mechanisms, including transmission of microRNAs, the mediators of the stress response, through the spermatozoa (K. Gapp et al., 2014), changes in microbiota of parents and their children, as well as cultural inheritance are involved to explain a complexity of observed radiobiological effects and their inheritance revealed in recent years.

Keywords: NPP accident, ionizing radiation, «horizontal» and «vertical» effects, reproductive success, transgeneration transmission.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Shimura T., Yamaguchi I., Terada H., Svendsen E.R., Kunugita N. Public health activities for mitigation of radiation exposures and risk communication challenges after the Fukushima nuclear accident. Journal of Radiation Research, 2015, 56(3): 422-429 CrossRef
  2. Glazko V.I., Glazko T.T. Sources of contradictions in the evaluation of population genetic consequences after the Shernobyl disaster. Acta Naturae, 2013, 5(1): 47-62.
  3. Little M.P., Goodhead D.T., Bridges B.A., Bouffler S.D. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents. Mutat. Res., 2013, 753(1): 50-67 CrossRef
  4. Little M.P. Germline minisatellite mutations in the offspring of irradiated parents. J. Radiol. Prot., 2015, 35: E1-E4 CrossRef
  5. Pernot E., Hall J., Baatout S., Benotmane M.A., Blanchardon E., Bouffler S., El Saghire H., Gomolka M., Guertler A., Harms-Ringdahl M., Jeggo P., Kreuzer M., Laurier D., Lindholm C., Mkacher R., Quint-
    ens R., Rothkamm K., Sabatier L., Tapio S., de Vathaire F., Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res., 2012, 751: 258-286 CrossRef
  6. Perumal V., Sekaran T.S.G., Raavi V., Basheerudeen S.A.S., Kanagaraj K., Chowdhury A.R., Paul S.F.D. Radiation signature on exposed cells: relevance in dose estimation. World J. Radiol., 2015, 7(9): 266-278 CrossRef
  7. Kulka U., Ainsbury L., Atkinson M., Barnard S., Smith R., Barquinero J.F., Barrios L., Bassinet C., Beinke C., Cucu A., Darroudi F., Fattibene P., Bortolin E., Della Monaca S., Gil O., Gregoire E., Hadjidekova V., Haghdoost S., Hatzi V., Hempel W., Herranz R., Jaworska A., Lindholm C., Lumniczky K., M’kacher R., Mörtl S., Montoro A., Moquet J., Moreno M., Noditi M., Ogbazghi A., Oestreicher U., Palitti F., Pantelias G., Popescu I., Prieto M.J., Roch-Lefevre S., Roessler U., Romm H., Rothkamm K., Sabatier L., Sebastia N., Sommer S., Terzoudi1 G., Testa A., Thierens H., Trompier F., Turai I., Vandevoorde C., Vaz P., Voisin P., Vral A., Ugletveit F., Wieser A., Woda C., Wojcik A. Realising the European networkof biodosimetry: RENEB — status quo. Radiation Protection Dosimetry, 2015, 164(1-2): 42-45 CrossRef
  8. Selmansberger M., Braselmann H., Hess J., Bogdanova T., Abend M., Tronko M., Brenner A., Zitzelsberger H., Unger K. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian-American Cohort. Carcinogenesis, 2015, 36(11): 1381-1387 CrossRef
  9. Little M.P., Kwon D., Zablotska L.B., Brenner A.V., Cahoon E.K., Rozhko A.V., Polyanskaya O.N., Minenko V.F., Golovanov I., Bouville A., Drozdovitch V. Impact of uncertainties in exposure assessment on thyroid cancer risk among persons in Belarus exposed as children or adolescents due to the Chernobyl accident. PLoS ONE, 2015, 10(10): e0139826 CrossRef
  10. Bogdanova T.I., Zurnadzhy L.Y., Nikiforov Y.E., Leeman-Neill R.J., Tronko M.D., Chanock S., Mabuchi K., Likhtarov I.A., Kovgan L.M., Drozdovitch V., Little M.P., Hatch M., Zablotska L.B., Shpak V.M., McConnell R.J., Brenner A.V. Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. Br. J. Cancer., 2015, 113(11): 1556-1564 CrossRef
  11. Drozd V.M., Saenko V.A., Brenner A.V., Drozdovitch V., Pashkevich V.I., Kudelsky A.V., Demidchik Y.E., Branovan I., Shiglik N., Rogounovitch T.I., Yamashita S., Biko J., Reiners C. Major factors affecting incidence of childhood thyroid cancer in Belarus after the Chernobyl accident: do nitrates in drinking water play a role. PLoS ONE, 2015, 10(9): e0137226 CrossRef
  12. Mitsutake N., Fukushima T., Matsuse M., Rogounovitch T., Saenko V., Uchino S., Ito M., Suzuki K., Suzuki S., Yamashita S. BRAFV600E mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Scientific Reports, 2015, 5: 16976 CrossRef
  13. Zimmermann M.B., Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Research, 2015, 8: 8 CrossRef
  14. Glazko V.I., Glazko T.T. Laws of anthropogenic (ecological) disasters - the example of the Chernobyl accident. Biotechnol. & Biotechnol. Equipment, 2011, 25(4): 1-6 CrossRef
  15. Rothkamm K., Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. PNAS USA, 2003, 100(9): 5057-5062 CrossRef
  16. Suzuki K., Yamashita S. Low-dose radiation exposure and carcinogenesis. Jpn. J. Clin. Oncol., 2012, 42(7): 563-568 CrossRef
  17. Markiewicz E., Barnard S., Haines J., Coster M., van Geel J., Wu W., Richards S., Ainsbury E., Rothkamm K., Bouffler S., Quinlan R.A. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biol., 2015, 5: 150011 CrossRef.
  18. Turner H.C., Shuryak I., Weber W., Doyle-Eisele M., Melo D., Guilmette R., Amundson S.A., Brenner D.J. γ-H2AX kinetic profile in mouse lymphocytes exposed to the internal emitters cesium-137 and strontium-90. PLoS ONE, 2015, 10(11): e0143815 CrossRef
  19. Solovjeva L., Firsanov D., Vasilishina A., Chagin V., Pleskach N., Kropotov A., Svetlova M. DNA double-strand break repair is impaired in presenescent Syrian hamster fibroblasts. BMC Mol. Biol., 2015, 16: 18 CrossRef
  20. Scott B.R. Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J. Cell. Commun. Signal., 2014, 8: 341-352 CrossRef
  21. Samper E., Nicholls D.G., Melov S. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell, 2003, 2(5): 277-285 CrossRef
  22. Velarde M.C., Flynn J.M., Day N.U., Melov S., Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY), 2012, 4(1): 3-12.
  23. Adam M.L., Torres M.F.P., Franci A.C., Sponchiado G., Torres R.A., dos Santos Correia M.T. On the stress by photoperiod, temperature and noise as possible causes of genomic damaging in an animal model. Stress Health, 2011, 27: e152-156 CrossRef
  24. Skinner M.K., Guerrero-Bosagna C., Haque M.M. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics, 2015, 10(8): 762-771 CrossRef
  25. Surowy H., Rinckleb A., Luedeke M., Stuber M., Wecker A., Varga D., Maier C., Hoegel J., Vogel W. Heritability of baseline and induced micronucleus frequencies. Mutagenesis, 2011, 26(1): 111-117 CrossRef
  26. Glazko T.T., Arkhipov N.P., Glazko V.I. Populyatsionno-geneticheskie posledstviya ekologicheskikh katastrof na primere chernobyl'skoi avarii [Population genetics effects of  environmental disasters on the example of Chernobyl accident (in Russ.)]. Moscow, 2008.
  27. Aliyu A.S., Ramli A.T. The world’s high background natural radiation areas (HBNRAs) revisited: a broad overview of the dosimetric, epidemiological and radiobiological issues. Radiation Measurements, 2015, 73: 51-59 (http://www.researchgate.net/publication/270704634).  
  28. Møller A.P., Mousseau T.A. The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol. Rev., 2013, 88(1): 226-254 CrossRef
  29. Hasegawa A., Tanigawa K., Ohtsuru A., Yabe H., Maeda M., Shigemura J., Ohira T., Tominaga T., Akashi M., Hirohashi N., Ishikawa T., Kamiya K., Shibuya K., Yamashita S., Chhem R.K. Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima. Lancet, 2015, 386(9992): 479-488 CrossRef
  30. Kamiya K., Ozasa K., Akiba S., Niwa O., Kodama K., Takamura N., Zaharieva E.K., Kimura Y., Wakeford R. Long-term effects of radiation exposure on health. Lancet, 2015, 386(9992): 469-478 CrossRef
  31. Richardson D., Sugiyama H., Nishi N., Sakata R., Shimizu Y., Grant E.J., Soda M., Hsu W.-L., Suyama A., Kodama K., Kasagi F. Ionizing radiation and leukemia mortality among Japanese atomic bomb survivors, 1950-2000. Radiat. Res., 2009, 172: 368-382 CrossRef
  32. Hsu W.-L., Preston D.L., Soda M., Sugiyama H., Funamoto S., Kodama K., Kimura A., Kamada N., Dohy H., Tomonaga M., Iwanaga M., Miyazaki Y., Cullings H.M., Suyama A., Ozasa K., Shore R.E., Mabuchi K. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950-2001. Radiat. Res., 2013, 179: 361-382 CrossRef
  33. Tsubokura M., Takita M., Matsumura T., Hara K., Tanimoto T., Kobayashi R., Hamaki T., Oiso G., Kami M., Okawada T., Tachiya T. Changes in metabolic profiles after the Great East Japan Earthquake: a retrospective observational study. BMC Public Health, 2013, 13: 267 CrossRef
  34. Hasegawa J., Hidaka H., Kuriyama S., Obara T., Hashimoto K., Tateda Y., Okumura Y., Kobayashi T., Katori Y. Change in and long-term investigation of neuro-otologic disorders in disaster-stricken Fukushima Prefecture: retrospective cohort study before and after the Great East Japan Earthquake. PLoS ONE, 2015, 10(4): e0122631 CrossRef
  35. Sakai A., Ohira T., Hosoya M., Ohtsuru A., Satoh H., Kawasaki Y., Suzuki H., Takahashi A., Kobashi G., Ozasa K., Yasumura S., Yamashita S., Kamiya K., Abe M. Life as an evacuee after the Fukushima Daiichi nuclear power plant accident is a cause of polycythemia: the Fukushima health management survey. BMC Public Health, 2014, 14: 1318 CrossRef
  36. Eglite M.E., Zvagule T.J., Rainsford K.D., Reste J.D., Curbakova E.V., Kurjane N.N. Clinical aspects of the health disturbances in Chernobyl Nuclear Power Plant accident clean-up workers (liquidators) from Latvia. Inflammopharmacology, 2009, 17(3): 163-169 (Epub 2009 Jun 13).
  37. Bromet E.J., Gluzman S., Schwartz J.E., Goldgaber D. Somatic symptoms in women 11 years after the Chornobyl accident: prevalence and risk factors. Environ. Health Perspect., 2002, 110(suppl. 4): 625-629 (http://ehpnet1.niehs.nih.gov/docs/2002/suppl-4/625-629bromet/abstract.html).
  38. Goto A., Bromet E.J., Fujimori K. Immediate effects of the Fukushima nuclear power plant disaster on depressive symptoms among mothers with infants: a prefectural-wide cross-sectional study from the Fukushima health management survey. BMC Psychiatry, 2015, 15: 59 CrossRef
  39. Suzuki Y., Yabe H., Yasumura S., Ohira T., Niwa S.-I., Ohtsuru A., Ma-
    shiko H., Maeda M., Abe M. Psychological distress and the perception of radiation risks: the Fukushima health management survey. Bull. World Health Org., 2015, 93: 598-605 CrossRef
  40. Laidra K., Rahu K., Tekkel M., Aluoja A., Leinsalu M. Mental health and alcohol problems among Estonian cleanup workers 24 years after the Chernobyl accident. Social Psychiatry and Psychiatric Epidemiology, 2015, 50(11): 1753-1760 CrossRef
  41. Bromet E.J., Luft B.J. Consequences of toxic disasters for rescue, recovery, and clean-up workers require integrated mental and physical health monitoring. Social Psychiatry and Psychiatric Epidemiology, 2015, 50(11): 1761-1763 CrossRef
  42. Contis G., Foley T.P. Depression, suicide ideation, and thyroid tumors among Ukrainian adolescents exposed as children to Chernobyl radiation. J. Clin. Med. Res., 2015, 7(5): 332-338 CrossRef
  43. Nyagu A.I., Loganovskii K.N. Neiropsikhiatricheskie effekty ioniziruyushchikh izluchenii [Neuropsychiatric effects of ionizing radiation (in Russ.)]. Kiev, 1998.
  44. Nyagu A.I., Loganovskii K.N. Zhurnal nevropatologii i psikhiatrii im. S.S. Korsakova, 1997, 97(2): 62-70 (in Russ.).
  45. Heiervang K.S., Mednick S., Sundet K., Rund B.R. Effect of low dose ionizing radiation exposure in utero on cognitive function in adolescence. Scand. J. Psychol., 2010, 51(3): 210-215.
  46. Baulch J.E., Craver B.M., Tran K.K., Yu L., Chmielewski N., Allen B.D., Limoli C.L. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles. Redox Biology, 2015, 5: 24-32 CrossRef
  47. Parihar V.K., Allen B.D., Tran K.K., Chmielewski N.N., Craver B.M., Martirosian V., Morganti J.M., Rosi S., Vlkolinsky R., Acharya M.M., Nelson G.A., Allen A.R., Limoli C.L. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction. Antioxidants & Redox Signaling, 2014, 22(1): 78-91 CrossRef
  48. Sugimoto T., Shinozaki T., Miyamoto Y. Aftershocks associated with impaired health caused by the Great East Japan Disaster among youth across Japan: a national cross-sectional survey. Interact. J. Med. Res., 2013, 2(2): e31 CrossRef
  49. Tanaka R. Prolonged living as a refugee from the area around a stricken nuclear power plant increases the risk of death. Prehosp. Disaster. Med., 2015, 30(4): 425-430 CrossRef
  50. Shmal'gauzen I.I. Faktoryevolyutsii. Teoriya stabiliziruyushchego otbora. [Factors of evolution. Stabilizing selection concept (in Russ.)]. Moscow, 1968.
  51. Dalgaard N.T., Todd B.K., Daniel S.I., Montgomery E. The transmission of trauma in refugee families: associations between intra-family trauma communication style, children’s attachment security and psychosocial adjustment. Attach. Hum. Dev., 2016, 18(1): 69-89 CrossRef
  52. Braga L.L., Mello M.F., Fiks J.P. Transgenerational transmission of trauma and resilience: a qualitative study with Brazilian offspring of Holocaust survivors. BMC Psychiatry, 2012, 12: 134 CrossRef
  53. Ben-Ezra M., Palgi Y., Soffer Y., Shrira A. Mental health consequences of the 2011 Fukushima nuclear disaster: are the grandchildren of people living in Hiroshima and Nagasaki during the drop of the atomic bomb more vulnerable. World Psychiatry, 2012, 11(2): 133 CrossRef
  54. Dalgaard N.T., Montgomery E. Disclosure and silencing: a systematic review of the literature on patterns of trauma communication in refugee families. Transcultural Psychiatry, 2015, 52(5): 579-593 CrossRef
  55. Wang B., Tanaka K., Katsube T., Ninomiya Y., Vares G., Liu Q., Morita A., Nakajima T., Nenoi M. Chronic restraint-induced stress has little modifying effect on radiation hematopoietic toxicity in mice. J. Radiat. Res., 2015, 56(5): 760-767 CrossRef
  56. Pembrey M., Saffery R., Bygren L.O. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J. Med. Genet., 2014, 51: 563-572 CrossRef
  57. Grandjean Ph., Barouki P., Bellinger D.C., Casteleyn L., Chadwick L.H., Cordier S., Etzel R.A., Gray K.A., Ha E.-H., Junien C., Karagas M., Kawamoto T., Lawrence B.P., Perera F.P., Prins G.S., Puga A., Rosenfeld C.S., Sherr D.H., Sly P.D., Suk W., Sun Q., Toppari J., van den Hazel P., Walker C.L., Heindel J.J. Life-long implications of developmental exposure to environmental stressors: new perspectives. Endocrinology, 2015, 156(10): 3408-3415 CrossRef
  58. Trerotola M., Relli V., Simeone P., Alberti S. Epigenetic inheritance and the missing heritability. Human Genomics, 2015, 9: 17 CrossRef
  59. Casas E., Vavouri T. Sperm epigenomics: challenges and opportunities. Front. Genet., 2014, 5: 330 CrossRef
  60. Weigmann K. Lifestyle in the sperm. EMBO reports, 2014, 15: 1233-1237 CrossRef
  61. Wu H., Hauser R., Krawetz S.A., Pilsner J.R. Environmental susceptibility of the sperm epigenome during windows of male germ cell development. Curr. Envir. Health Rpt., 2015, 2: 356-366 CrossRef
  62. Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P., Prados J., Farinelli L., Miska E., Mansuy I.M. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci., 2014, 17: 667-669 CrossRef
  63. Rodgers A.B., Bale T.L. Germ cell origins of posttraumatic stress disorder risk: the transgenerational impact of parental stress experience. Biological Psychiatry, 2015, 78(5): 307-314 CrossRef
  64. Bale T.L. Lifetime stress experience: transgenerational epigenetics and germ cell programming. Dialogues Clin. Neurosci., 2014, 16(3): 297-305 (http://www.dialogues-cns.org).
  65. Rodgers A.B., Morgan C.P., Leu N.A., Bale T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. PNAS USA, 2015, 112(44): 13699-13704 CrossRef
  66. Brieño-Enríquez M.A., García-López J., Cárdenas D.B., Guibert S., Cleroux E., Ded L.,  de Dios Hourcade J., Peknicová J., Weber M., del Mazo J. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS ONE, 2015, 10(4): e0124296 CrossRef
  67. Virant-Klun I., Ståhlberg A., Kubista M., Skutella T. MicroRNAs: from female fertility, germ cells, and stem cells to cancer in Humans. Stem Cells International, 2016, 2016, Article ID 3984937, 17 pages CrossRef
  68. Asgari S. Epigenetic modifications underlying symbiont-host interactions. Adv. Genet., 2014, 86: 253-276 CrossRef
  69. Bordenstein S.R., Theis K.R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol., 2015, 13(8): e1002226 CrossRef
  70. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, 4: 147 CrossRef

back