doi: 10.15389/agrobiology.2023.1.3eng

UDC: 636.2.033:577.21:57.087

Supported financially from the Russian Science Foundation, project № 22-24-00489.



A.V. Pigolev1, E.A. Degtyaryov1, 2, D.N. Miroshnichenko1, 3, 4,
T.V. Savchenko1

1Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research RAS, 2, ul. Institutskaya, Pushchino, 142290 Russia e-mail, (✉ corresponding author);
2Puschchino State Institute of Natural Sciences, 3, Prospect Nauki, Pushchino, 142290 Russia e-mail;
3Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 6, Prospect Nauki, Pushchino, 142290 Russia;
4All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail

Miroshnichenko D.N.
Pigolev A.V.
Degtyaryov E.A. 0000-0002-9266-7317
Savchenko T.V.

Received August 26, 2022

Nowadays, the search for new effective methods and approaches based on using natural bioactive compounds that control plant growth, development, and plant productivity with minimal impact to the environment and human health is still in great demand. One of the directions developing during the last decades contributing to the “greening” of agricultural production is the application agrochemicals based on phytohormones with protective functions, such as abscisic acid, salicylic acid, and jasmonates. The use of these phytohormones is very promising since it can significantly increase plant tolerance to unfavorable factors of biotic and abiotic nature. This review summarizes the current information on the biological functions of abscisic acid, jasmonates, and salicylates, presents the examples demonstrating crop species treatment with the agrochemicals based on these phytohormones, and discusses the promising directions for the phytohormones application in agriculture. Abscisic acid, jasmonates, and salicylates are often referred to as stress hormones because they regulate the plant adaptive responses to adverse environmental conditions. Abscisic acid is a regulator of plant growth and development throughout ontogenesis, as well as tolerance to abiotic and biotic stress factors (J. Li et al., 2017), plays a role in the stomata closure, regulating the ion flow in the guard cells, controls all stages of seed maturation (K. Chen et al., 2020). Abscisic acid can play positive and negative roles in plant protection against pathogens (L. Lievens et al., 2017; K. Xie et al., 2018) and influence the symbiotic relationships with fungi and bacteria (A. Tsyganova, V. Tsyganov, 2015). Salicylic acid controls plant tolerance to pathogens (A. Vlot et al., 2009; P. Ding, Y. Ding, 2020), plays a role in the development of hypersensitive response, death of infected cells (D. Klessig and J. Malamy, 1994; M. Alvarez, 2000), and formation of tolerance in unaffected plant parts (systemic acquired resistance) (M. Bürger, J. Chory, 2019). Salicylic acid may also be involved in the enhancement of plant tolerance to salt and low temperature stress (E. Horvath et al., 2015; Yu. Kolupaev, Yu. Karpets, 2021; W. Wang et al., 2018) and maintenance of the root zone microbiome (S. Lebeis et al., 2015). The range of regulatory effects of jasmonates is broad, but their functions are primarily associated with the regulation of mechanisms that determine plant tolerance to necrotrophic pathogens and insects, including root pests (C. Rohwer, J. Erwin, 2008; S. Johnson et al., 2018). Jasmonates also control plant tolerance to low temperature, salt stress, flooding, drought, ozone, heavy metals, and ultraviolet radiation (T. Savchenko et al., 2014; D. Pandita, 2022; T. Savchenko et al., 2019; K. Kazan, 2015; H. Kim et al., 2021). The high biological activity of abscisic acid, salicylates and jasmonates determines the significant potential of their application in agriculture to increase plant stress tolerance. At the same time, according to published data, the increase in plant tolerance mediated by the mentioned phytohormones is often accompanied by the suppression of growth-related processes, which can adversely affect crop yields and product quality. To assess the prospects for the practical use of agrochemicals based on abscisic acid, jasmonates, and salicylic acid, a comprehensive analysis of the available data on the physiological effects caused by these substances is necessary due to their spectrum of actions, dependent on species/variety specificity, phase of plant development, susceptibility of the target tissue, chemicals concentration, duration of treatment and conditions of application.

Keywords: phytohormones, abscisic acid, jasmonic acid, salicylic acid, physiological effects, plant tolerance, abiotic stress, biotic stressors, exogenous treatment, adaptive response.



  1. Meng Y., Shuai H., Luo X., Chen F., Zhou W., Yang W., Shu K. Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Frontiers in Plant Science, 2017, 7: 02021 CrossRef
  2. Banerjee A., Roychoudhury A. Chapter 18 — Roles of turgorins and systemins in promoting agriculture. In: Emerging plant growth regulators in agriculture. T. Aftab, M. Naeem (eds.). Academic Press, 2022: 415-422 CrossRef
  3. Handa A.K., Fatima T., Mattoo A.K. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Frontiers in Chemistry, 2018, 6: 10 CrossRef
  4. Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorganic and Medicinal Chemistry, 2016, 24(3): 484-92 CrossRef
  5. Skůpa P., Opatrný Z., Petrášek J. Auxin biology: applications and the mechanisms behind. In: Applied plant cell biology: cellular tools and approaches, vol. 22. P. Nick, Z. Opatrny (eds.). Berlin, Springer, 2014 CrossRef
  6. Rademacher W. Chemical regulators of gibberellin status and their application in plant production. In: Annual plant reviews. J.A. Roberts (eds.). Wiley-Blackwell, Hoboken, 2017: 359-403 CrossRef
  7. Ghosh S., Halder S. Effect of different kinds of gibberellin on temperate fruit crops: a review. Pharma Innovation, 2018, 7(3): 315-319.
  8. Bagale P., Pandey S., Regmi P., Bhusal S. Role of plant growth regulator “gibberellins” in vegetable production: an overview. International Journal of Horticultural Science and Technology, 2022, 9(3): 291-299 CrossRef
  9. Kosakivska I.V., Vedenicheva N.P., Babenko L.M., Voytenko L.V., Romanenko K.O., Vasyuk V.A. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Molecular Biology Reports, 2022, 49(1): 617-628 CrossRef
  10. Coll Y., Coll F., Amorós A., Pujol M. Brassinosteroids roles and applications: an up-date. Biologia, 2015, 70(6): 726-732 CrossRef
  11. Li J., Wu Y., Xie Q., Gong Z. Abscisic acid. In: Hormone metabolism and signaling in plants /S.M. Smith (eds.). Academic, Elsevier, New York, 2017: 161-202.
  12. Chen K., Li G.-J., Bressan R.A., Song C.-P., Zhu J.-K., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62(1): 25-54 CrossRef
  13. Levi M., Brusa P., Chiatante D., Sparvoli E. Cell cycle reactivation in cultured pea embryo axes. Effect of abscisic acid. In Vitro Cellular & Developmental Biology — Plant, 1993, 29(2): 47-50 CrossRef
  14. Liu Y., Bergervoet J.H.W., De Vos C.H.R., Hilhorst H.W.M., Kraak H.L., Karssen C.M., Bino R.J.. Nuclear replication activities during imbibition of abscisic acid and gibberellin-deficient tomato (Lycopersicon esculentum Mill.) seeds. Planta, 1994, 194(3): 368-373 CrossRef
  15. Finkelstein R. Abscisic acid synthesis and response. The Arabidopsis Book, 2013, 11: e0166 CrossRef
  16. Frey A., Godin B., Bonnet M., Sotta B., Marion-Poll A. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta, 2004, 218(6): 958-964  CrossRef
  17. Hewage K.A.H., Yang J.-F., Wang D., Hao G.-F., Yang G.-F., Zhu J.-K. Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture. Advanced Science, 2020, 7(18): 2001265 CrossRef
  18. Yoshida T., Obata T., Feil R., Lunn J.E., Fujita Y., Yamaguchi-Shinozaki K., Fernie A.R. The role of abscisic acid signaling in maintaining the metabolic balance required for arabidopsis growth under nonstress conditions. The Plant Cell, 2019, 31(1): 84-105 CrossRef
  19. Zhao Y., Zhang Z., Gao J., Wang P., Hu T., Wang Z., Hou Y.-J., Wan Y., Liu W., Xie S., Lu T., Xue L.,Liu Y., Macho A.P., Tao W.A., Bressan R.A., Zhu J.-K. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Reports, 2018, 23(11): 3340-3351 CrossRef
  20. Negin B., Yaaran A., Kelly G., Zait Y., Moshelion M. Mesophyll Abscisic Acid restrains early growth and flowering but does not directly suppress photosynthesis. Plant Physiology, 2019, 180(2): 910-925 CrossRef
  21. Humplík J.F., Bergougnoux V., Van Volkenburgh E. To stimulate or inhibit? That is the question for the function of abscisic acid. Trends in Plant Science, 2017, 22(10): 830-841 CrossRef
  22. Lievens L., Pollier J., Goossens A., Beyaert R., Staal J. Abscisic acid as pathogen effector and immune regulator. Frontiers in Plant Science, 2017, 8: 587 CrossRef
  23. Xie K., Li L., Zhang H., Wang R., Tan X., He Y., Hong G., Li J., Ming F., Yao X., Yan F., Sun Z., Chen J. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice: a negative role of ABA in rice response to RBSDV. Plant, Cell and Environment, 2018, 41(10): 2504-2514 CrossRef
  24. Tsyganova A.V., Tsyganov V.E. Negative hormonal regulation of symbiotic nodule development. i. ethylene (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(3): 267-277 CrossRef
  25. Travaglia C., Reinoso H., Bottini R. Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop and Pasture Science,2009, 60(12): 1131-1136 CrossRef
  26. Hussain S., Ma B.L., Saleem M.F., Anjum S.A., Saeed A., Iqbal J. Abscisic acid spray on sunflower acts differently under drought and irrigation conditions. Agronomy Journal, 2012, 104(3): 561-568 CrossRef
  27. Hussain S., Saleem M.F., Iqbal J., Ibrahim M.M., Atta S., Ahmed T., Rehmani M.I.A. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought. Pakistan Journal of Agricultural Sciences, 2014, 51(1): 49-58.
  28. Esperança C.D.F., Petri J.L., Rossi A.D., Couto M., Sezerino A.A., Gabardo G.C. Induction of senescence and foliar abscission in apple trees with the use of abscisic acid. Journal of Experimental Agriculture International, 2019, 35(5): 1-10 CrossRef
  29. Jarolmasjed S., Sankaran S., Kalcsits L., Khot L.R. Proximal hyperspectral sensing of stomatal conductance to monitor the efficacy of exogenous abscisic acid applications in apple trees. Crop Protection, 2018, 109: 42-50 CrossRef
  30. Time A., Ponce C., Kuhn N., Arellano M., Sagredo B., Donoso J.M., Meisel L.A. Canopy spraying of abscisic acid to improve fruit quality of different sweet cherry cultivars. Agronomy, 2021, 11(10): 1947 CrossRef
  31. Melgoza F.J., Kusakabe A., Nelson S.D., Melgar J.C. Exogenous applications of abscisic acid increase freeze tolerance in citrus trees. International Journal of Fruit Science, 2014, 14(4): 376-387 CrossRef
  32. Wang X., Yin W., Wu J., Chai L., Yi H. Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening. Scientia Horticulturae, 2016, 201: 175-183 CrossRef
  33. Balint G., Reynolds A.G. Impact of exogenous abscisic acid on vine physiology and grape composition of Cabernet Sauvignon. American Journal of Enology and Viticulture, 2013, 64(1): 74-87 CrossRef
  34. Gagné S., Esteve K., Deytieux-Belleau C., Saucier C., Geny L. Influence of abscisic acid in triggering "véraison" in grape berry skins of Vitis vinifera L. cv. Cabernet-Sauvignon. OENO One, 2006, 40(1): 7 CrossRef
  35. Gambetta G.A., Matthews M.A., Shaghasi T.H., McElrone A.J., Castellarin S.D. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232(1): 219-234 CrossRef
  36. Koyama K., Sadamatsu K., Goto-Yamamoto N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Functional and Integrative Genomics, 2010, 10(3): 367-381 CrossRef
  37. Li J., Liu B., Li X., Li D., Han J., Zhang Y., Ma C., Xu W., Wang L., Jiu S., Zhang C., Wang S. Exogenous abscisic acid mediates berry quality improvement by altered endogenous plant hormones level in "Ruiduhongyu" grapevine. Frontiers in Plant Science, 2021, 12: 739964 CrossRef
  38. Kou X., Yang S., Chai L., Wu C., Zhou J., Liu Y., Xue Z. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Scientia Horticulturae, 2021, 281: 109999 CrossRef
  39. Li Z., Zhao X., Sandhu A.K., Gu L. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. Journal of Agricultural and Food Chemistry, 2010, 58(10): 6503-6509 CrossRef
  40. Barickman T.C., Kopsell D.A., Sams C.E. Abscisic acid impacts tomato carotenoids, soluble sugars, and organic acids. HortScience, 2016, 51(4): 370-376 CrossRef
  41. Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47: 177-206 CrossRef
  42. Ding P., Ding Y. Stories of salicylic acid: a plant defense hormone. Trends in Plant Science, 2020, 25(6): 549-565 CrossRef
  43. Klessig D.F., Malamy J. The salicylic acid signal in plants. Plant Molecular Biology, 1994, 26(5): 1439-1458 CrossRef
  44. Alvarez M.E. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 2000, 44(3): 429-442 CrossRef
  45. Bürger M., Chory J. Stressed out about hormones: how plants orchestrate immunity. Cell Host & Microbe, 2019, 26(2): 163-172 CrossRef
  46. Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic acid in plant disease resistance. Science, 1994, 266(5188): 1247-1250 CrossRef
  47. Vernooij B., Friedrich L., Goy P.A., Staub T., Kessmann H., Ryals J. 2, 6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Molecular plant-Microbe Interactions, 1995, 8(2): 228-234 CrossRef
  48. Peng Y., Yang J., Li X., Zhang Y. Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology, 2021, 72: 761-791 CrossRef
  49. Sinha M., Singh R.P., Kushwaha G.S., Iqbal N., Singh A., Kaushik S., Kaur P., Sharma S., Singh T.P. Current overview of allergens of plant pathogenesis related protein families. The Scientific World Journal, 2014, 2014: 543195 CrossRef
  50. Zhang Y., Cheng Y.T., Qu N., Zhao Q., Bi D., Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. The Plant Journal, 2006, 48(5): 647-656 CrossRef
  51. Chen Z., Silva H., Klessig D.F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262(5141): 1883-1886 CrossRef
  52. Tan S., Abas M., Verstraeten I., Glanc M., Molnár G., Hajný J., Lasák P., Petřík I., Russinova E., Petrášek J., Novák O., Pospíšil J., Friml J. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Current Biology, 2020, 30(3): 381-395 e8 CrossRef
  53. Koo Y.M., Heo A.Y., Choi H.W. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 2020, 36(1): 1-10 CrossRef
  54. Mandal S., Mallick N., Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 2009, 47(7): 642-649 CrossRef
  55. Li T., Huang Y., Xu Z.-S., Wang F., Xiong A.-S. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biology, 2019, 19(1): 173 CrossRef
  56. Daw B.D., Zhang L.H., Wang Z.Z. Salicylic acid enhances antifungal resistance to Magnaporthe grisea in rice plants. Australasian Plant Pathology, 2008, 37(6): 637-644 CrossRef
  57. Mohan Babu R., Sajeena A., Vijaya Samundeeswari A., Sreedhar A., Vidhyasekaran P., Seetharaman K., Reddy M.S. Induction of systemic resistance to Xanthomonas oryzae pv. oryzae by salicylic acid in Oryza sativa (L.). Journal of Plant Diseases and Protection, 2003, 110(5): 419-431 CrossRef
  58. Wang Y., Liu J.H. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology, 2012, 169(12): 1143-1149 CrossRef
  59. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 2005, 43: 205-227 CrossRef
  60. El Oirdi M., El Rahman T.A., Rigano L., El Hadrami A., Rodriguez M.C., Daayf F., Vojnov A., Bouarab K. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant Cell, 2011, 23(6): 2405-2421 CrossRef
  61. Khanam N.N., Ueno M., Kihara J., Honda Y., Arase S. Suppression of red light-induced resistance in broad beans to Botrytis cinerea by salicylic acid. Physiological and Molecular Plant Pathology, 2005, 66(1-2): 20-29 CrossRef
  62. Ferrari S., Plotnikova J.M., De Lorenzo G., Ausubel F.M. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal, 2003, 35(2): 193-205 CrossRef
  63. Li L., Zou Y. Induction of disease resistance by salicylic acid and calcium ion against Botrytis cinerea in tomato (Lycopersicon esculentum). Emirates Journal of Food and Agriculture, 2016, 29(1): 78-82 CrossRef
  64. Horvath E., Csiszar J., Galle A., Poor P., Szepesi A., Tari I. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 2015, 183: 54-63 CrossRef
  65. Kolupaev Yu.E., Karpets’ Yu.V. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2021, 55 CrossRef (in Russ.).
  66. Wang W., Wang X., Huang M., Cai J., Zhou Q., Dai T., Cao W., Jiang D. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 2018, 9: 1137 CrossRef
  67. Rivas-San Vicente M., Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 2011, 62(10): 3321-3338 CrossRef
  68. Lebeis S.L., Paredes S.H., Lundberg D.S., Breakfield N., Gehring J., McDonald M., Malfatti S., Glavina del Rio T., Jones C.D., Tringe S.G., Dangl J.L. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349(6250): 860-864 CrossRef
  69. Rajjou L., Belghazi M., Huguet R., Robin C., Moreau A., Job C., Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 2006, 141(3): 910-923 CrossRef
  70. Zeilmaker T., Ludwig N.R., Elberse J., Seidl M.F., Berke L., Van Doorn A., Schuurink R.C., Snel B., Van den Ackerveken G. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. The Plant Journal, 2015, 81(2): 210-222 CrossRef
  71. Zhang Y., Zhao L., Zhao J., Li Y., Wang J., Guo R., Gan S., Liu C.-J., Zhang K. S5H/DMR6 encodes a salicylic acid 5-Hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiology, 2017, 175(3): 1082-1093 CrossRef
  72. Raskin I., Turner I.M., Melander W.R. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceedings of the National Academy of Sciences, 1989, 86(7): 2214-2218 CrossRef
  73. Rhoads D.M., McIntosh L. Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. The Plant Cell, 1992, 4(9): 1131-1139 CrossRef
  74. Cleland C.F., Tanaka O. Effect of daylength on the ability of salicylic acid to induce flowering in the long-day plant Lemna gibba G3 and the short-day plant Lemna paucicostata 6746. Plant Physiology, 1979, 64(3): 421-424 CrossRef
  75. Martinez C., Pons E., Prats G., Leon J. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 2004, 37(2): 209-217 CrossRef
  76. Jin J.B., Jin Y.H., Lee J., Miura K., Yoo C.Y., Kim W.-Y., Van Oosten M., Hyun Y., Somers D.E., Lee I., Yun D.-J., Bressan R.A., Hasegawa P.M. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. The Plant Journal, 2008, 53(3): 530-540 CrossRef
  77. Morris K., A.-H.-Mackerness S., Page T., John C.F., Murphy A.M., Carr J.P., Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 2000, 23(5): 677-685 CrossRef
  78. Sariñana-Aldaco O., Sánchez-Chávez E., Troyo-Diéguez E., Tapia-Vargas L.M., Díaz-Pérez J.C., Preciado-Rangel P. Foliar aspersion of salicylic acid improves nutraceutical quality and fruit yield in tomato. Agriculture, 2020, 10(10): 482 CrossRef
  79. Senaratna T., Touchell D., Bunn E., Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 2000, 30(2): 157-161 CrossRef
  80. Butsanets P.A., Shugaev A.G. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal, 2021, 12(114): 63-66 CrossRef (in Russ.).
  81. Souri M.K., Tohidloo G. Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 2019, 6(1): 26 CrossRef
  82. Bayat H., Aminifard M.H. Salicylic acid treatment extends the vase life of five commercial cut flowers. Electronic Journal of Biology, 2017, 13(1): 67-72.
  83. Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M., Kazi A.M., Gucel S. Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science, 2016, 7: 813 CrossRef
  84. Huang H., Liu B., Liu L., Song S. Jasmonate action in plant growth and development. Journal of Experimental Botany, 2017, 68(6): 1349-1359 CrossRef
  85. Wasternack C., Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021-1058 CrossRef
  86. Tran L.-S.P., Pal S. Phytohormones: a window to metabolism, signaling and biotechnological applications. New York, Springer-Verla, 2014.
  87. Stintzi A., Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences, 2000, 97(19): 10625-10630 CrossRef
  88. Schaller A., Stintzi A. Enzymes in jasmonate biosynthesis — structure, function, regulation. Phytochemistry, 2009, 70(13-14): 1532-1538 CrossRef
  89. Stintzi A., Weber H., Reymond P., Browse J., Farmer E.E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proceedings of the National Academy of Sciences, 2001, 98(22): 12837-12842 CrossRef
  90. Taki N., Sasaki-Sekimoto Y., Obayashi T., Kikuta A., Kobayashi K., Ainai T., Yagi K., Sakurai N., Suzuki H., Masuda T., Takamiya K., Shibata D., Kobayashi Y., Ohta H. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology, 2005, 139(3): 1268-1283 CrossRef
  91. Ribot C., Zimmerli C., Farmer E.E., Reymond P., Poirier Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiology, 2008, 147(2): 696-706 CrossRef
  92. Arnold M.D., Gruber C., Flokova K., Miersch O., Strnad M., Novak O., Wasternack C., Hause B. The recently identified isoleucine conjugate of cis-12-Oxo-Phytodienoic acid is partially active in cis-12-oxo-phytodienoic acid-specific gene expression of Arabidopsis thaliana. PLoS ONE, 2016, 11(9): e0162829 CrossRef
  93. Rohwer C.L., Erwin J.E. Horticultural applications of jasmonates. The Journal of Horticultural Science and Biotechnology, 2008, 83(3): 283-304 CrossRef
  94. Johnson S.N., Glauser G., Hiltpold I., Moore B.D., Ryalls J.M.W. Root herbivore performance suppressed when feeding on a jasmonate-induced pasture grass. Ecological Entomology, 2018, 43(4): 547-550 CrossRef
  95. Trang Nguyen H., Thi Mai To H., Lebrun M., Bellafiore S., Champion A. Jasmonates-the master regulator of rice development, adaptation and defense. Plants, 2019, 8(9): 339 CrossRef
  96. Vega-Muñoz I., Duran-Flores D., Fernández-Fernández Á.D., Heyman J., Ritter A., Stael S. Breaking bad news: dynamic molecular mechanisms of wound response in plants. Frontiers in Plant Science, 2020, 11: 610445 CrossRef
  97. Pieterse C.M., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 2012, 28: 489-521 CrossRef
  98. Felton G.W., Donato K.K., Broadway R.M., Duffey S.S. Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. Journal of Insect Physiology, 1992, 38(4): 277-285 CrossRef
  99. Fidantsef A.L., Stout M.J., Thaler J.S., Duffey S.S., Bostock R.M. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 1999, 54: 97-114 CrossRef
  100. Farmer E.E., Ryan C.A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences, 1990, 87(19): 7713-7716 CrossRef
  101. Chen H., Wilkerson C.G., Kuchar J.A., Phinney B.S., Howe G.A. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proceedings of the National Academy of Sciences, 2005, 102(52): 19237-19242 CrossRef
  102. Goodspeed D., Chehab E.W., Min-Venditti A., Braam J., Covington M.F. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences, 2012, 109(12): 4674-4677 CrossRef
  103. Okada K., Abe H., Arimura G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiology, 2015, 56(1): 16-27 CrossRef
  104. Meng Z.J., Yan S.C., Liu D,. Yang C.P. Effects of exogenous jasmonates on free amino acid contents in needles of Larix olgensis seedlings. African Journal of Agricultural Research, 2012, 7(19): 2995-3006 CrossRef
  105. Uddin M.R., Thwe A.A., Kim Y.B., Park W.T., Chae S.C., Park S.U. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. Journal of Chemical Ecology, 2013, 39(6): 712-722 CrossRef
  106. Wasternack C., Hause B. Jasmonates and octadecanoids: signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, 2002, 72: 165-221 CrossRef
  107. Howe G.A., Jander G. Plant immunity to insect herbivores. Annual Review of Plant Biology, 2008, 59: 41-66 CrossRef
  108. Paré P.W., Tumlinson J.H. Plant volatiles as a defense against insect herbivores. Plant Physiology, 1999, 121(2): 325-332 CrossRef
  109. De Moraes C.M., Lewis W.J., Paré P.W., Alborn H.T., Tumlinson J.H. Herbivore-infested plants selectively attract parasitoids. Letters to Nature, 1998, 393: 570-573 CrossRef
  110. Savchenko T., Pearse I.S., Ignatia L., Karban R., Dehesh K. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. The Plant Journal, 2013, 73(4): 653-662 CrossRef
  111. Engelberth J., Alborn H.T., Schmelz E.A., Tumlinson J.H. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences, 2004, 101(6): 1781-1785 CrossRef
  112. Farag M.A., Fokar M., Abd H., Zhang H., Allen R.D., Paré P.W. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta, 2005, 220(6): 900-909 CrossRef
  113. Savchenko T.V., Zastrizhnaya O.M., Klimov V.V. Biokhimiya, 2014, 79(4): 458-475 CrossRef (in Russ.).
  114. Pandita D. Chapter 5 - Jasmonates: key players in plant stress tolerance. In: Emerging plant growth regulators in agriculture. T. Aftab, M. Naeem (eds.). Academic Press, 2022: 165-192 CrossRef
  115. Savchenko T., Rolletschek H., Heinzel N., Tikhonov K., Dehesh K. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany, 2019, 70(10): 2919-2932 CrossRef
  116. Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015, 20(4): 219-229 CrossRef
  117. Kim H., Seomun S., Yoon Y., Jang G. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy, 2021, 11(9): 1886 CrossRef
  118. Siddiqi K.S., Husen A. Plant response to jasmonates: current developments and their role in changing environment. Bulletin of the National Research Centre, 2019, 43(1): 153 CrossRef
  119. Hu Y., Jiang L., Wang F., Yu D. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell, 2013, 25(8): 2907-2924 CrossRef
  120. Zhu T., Herrfurth C., Xin M., Savchenko T., Feussner I., Goossens A., De Smet I. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth. Nature Communications, 2021, 12(1): 4804 CrossRef
  121. Riemann M., Dhakarey R., Hazman M., Miro B., Kohli A., Nick P. Exploring jasmonates in the hormonal network of drought and salinity responses. Frontiers in Plant Science, 2015, 6: 1077 CrossRef
  122. Wang X., Li Q., Xie J., Huang M., Cai J., Zhou Q., Dai T., Jiang D. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal, 2021, 9(1): 120-132 CrossRef
  123. Savchenko T., Kolla V.A., Wang C.Q., Nasafi Z., Hicks D.R., Phadungchob B., Chehab W.E., Brandizzi F., Froehlich J., Dehesh K. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiology, 2014, 164(3): 1151-1560 CrossRef
  124. Savchenko T., Dehesh K. Drought stress modulates oxylipin signature by eliciting 12-OPDA as a potent regulator of stomatal aperture. Plant Signaling & Behavior, 2014, 9(4): e28304 CrossRef
  125. Delgado C., Mora-Poblete F., Ahmar S., Chen J.-T., Figueroa C.R. Jasmonates and plant salt stress: molecular players, physiological effects, and improving tolerance by using genome-associated tools. International Journal of Molecular Sciences, 2021, 22(6): 3082 CrossRef
  126. Kang D.-J., Seo Y.-J., Lee J.-D., Ishii R., Kim K.U., Shin D.H., Park S., Jang S.W., Lee I.-J. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science, 2005, 191(4): 273-282 CrossRef
  127. Yu H., Wang Y., Xing J., Zhang Y., Duan L., Zhang M., Li Z. Coronatine modulated the generation of reactive oxygen species for regulating the water loss rate in the detaching maize seedlings. Agriculture, 2021, 11(7): 685 CrossRef
  128. Ho T.-T., Murthy H.N., Park S.-Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences, 2020, 21(3): 716 CrossRef
  129. Kolupaev Yu.E., Yastreb T.O. Prikladnaya biokhimiya i mikrobiologiya, 2021, 57(1): 3-23 CrossRef (in Russ.).   
  130. Chen Q., Sun J.Q., Zhai Q.Z., Zhou W.K., Qi L.L., Xu L., Wang B., Chen R., Jiang H., Qi J., Li X., Palme K., Li C. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell, 2011, 23(9): 3335-3352 CrossRef
  131. Goetz S., Hellwege A., Stenzel I., Kutter C., Hauptmann V., Forner S., Mccaig B., Hause G., Miersch O., Wasternack C., Hause B. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiology, 2012, 158(4): 1715-1727 CrossRef
  132. Pigolev A., Miroshnichenko D., Dolgov S., Savchenko T. Regulation of sixth seminal root formation by jasmonate in Triticum aestivum L. Plants, 2021, 10(2): 219 CrossRef
  133. Hause B., Stenzel I., Miersch O., Maucher H., Kramell R., Ziegler J., Wasternack C. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. The Plant Journal, 2000, 24(1): 113-126 CrossRef
  134. Feys B., Benedetti C.E., Penfold C.N., Turner J.G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell, 1994, 6(5): 751-759 CrossRef
  135. Krajncic B., Kristl J., Janzekovic I. Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L. Plant Physiology and Biochemistry, 2006, 44(11-12): 752-758 CrossRef
  136. Creelman R.A., Mullet J.E. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Biology, 1997, 48: 355-381 CrossRef
  137. Xu Q., Truong T.T., Barrero J.M., Jacobsen J.V., Hocart C.H., Gubler F. A role for jasmonates in the release of dormancy by cold stratification in wheat. Journal of Experimental Botany, 2016, 67(11): 3497-3508 CrossRef
  138. Ravnikar M., Rode J., Gogala N., Benedicic D. Regulation of organogenesis with jasmonic acid. Acta Horticulturae, 1990, 280: 169-172 CrossRef
  139. Maciejewska B., Kopcewicz J. Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. Journal of Plant Growth Regulation, 2002, 21(3): 216-223 CrossRef
  140. Lalotra S., Hemantaranjan A., Yashu B.R., Srivastava R., Kumar S. Jasmonates: an emerging approach in biotic and abiotic stress tolerance. In: Plant science — structure, anatomy and physiology in plants cultured in vivo and in vitro. A. Gonzalez, M. Rodriguez, N.G. Sağlam (eds.). London, IntechOpen, 2020 CrossRef
  141. Kondo S., Roles of jasmonates in fruit ripening and environmental stress. Acta Horticulturae, 2010, 884: 711-716 CrossRef
  142. Chiu Y.-C., Matak K., Ku K.-M. Methyl jasmonate treated broccoli: Impact on the production of glucosinolates and consumer preferences. Food Chemistry, 2019, 299: 125099 CrossRef
  143. Koda Y. Possible involvement of jasmonates in various morphogenic events. Physiologia Plantarum, 1997, 100(3): 639-646 CrossRef
  144. Koda Y., Kikuta Y. Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Production Science, 2001, 4(1): 66-70 CrossRef
  145. Kim S.K., Kim J.T., Jang S.W., Lee S.C., Lee B.H., Lee I.J. Exogenous effect of gibberellins and jasmonate on tuber enlargement of Dioscorea opposita. Agronomy Research, 2005, 3: 39-44.
  146. Debeljak N., Regvar M., Dixon K.W., Sivasithamparam K. Induction of tuberisation in vitro with jasmonic acid and sucrose in an Australian terrestrial orchid, Pterostylis sanguinea. Plant Growth Regulation, 2004, 36: 253-260 CrossRef
  147. Lulai E.C., Orr P.H., Glynn M.T. Natural suppression of sprouting in stored potatoes using jasmonates. A01N37/42. North Dakota State University (USA). № US5436226A. Appl. 01.11.93. Publ. 25.07.95.
  148. Savchenko T.V., Rolletschek H., Dehesh K. Jasmonates-mediated rewiring of central metabolism regulates adaptive responses. Plant and Cell Physiology, 2019, 60(12): 2613-2620 CrossRef
  149. Boughton A.J., Hoover K., Felton G.W. Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis et Applicata, 2006, 120(3): 175-188 CrossRef
  150. Asghari M. Impact of jasmonates on safety, productivity and physiology of food crops. Trends in Food Science & Technology, 2019, 91: 169-183 CrossRef
  151. Tassoni A., Fornalè S., Franceschetti M., Musiani F., Michael A.J., Perry B., Bagni M. Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytologist, 2005, 166(3): 895-905 CrossRef
  152. Nimitkeatkai H., Shishido M., Okawa K., Ohara H., Ban Y., Kita M., Moriguchi T., Ikeura H., Hayata Y., Kondo S. Effect of jasmonates on ethylene biosynthesis and aroma volatile emission in japanese apricot infected by a pathogen (Colletotrichum gloeosporioides). Journal of Agricultural and Food Chemistry, 2011, 59(12): 6423-6429 CrossRef
  153. Ayala-Zavala J.F., Wang S.Y., Wang C.Y., González-Aguilar G.A. Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 2005, 221: 731-738 CrossRef
  154. Wang C.Y. Maintaining postharvest quality of raspberries with natural volatile compounds. International Journal of Food Science & Technology, 2003, 38(8): 869-785 CrossRef
  155. Jin P., Zheng Y.H., Cheng C., Gao H.-Y., Chen W.X., Chen H.J. Effect of methyl jasmonate treatment on fruit decay and quality in peaches during storage at ambient temperature. Acta Horticulturae, 2006, 712: 711-716 CrossRef
  156. Meir S., Droby S., Kochanek B., Salim S., Philosoph-Hadas S. Use of methyl jasmonate for suppression of botrytis rot in various cultivars of cut rose flowers. Acta Horticulturae, 2005, 669: 91-98 CrossRef
  157. Valent BioSciences. Available: Accessed: 01.06.2022.
  158. IUPAC. Prohydrojasmon. Available: Accessed: 01.06.2022.







Full article PDF (Rus)

Full article PDF (Eng)