doi: 10.15389/agrobiology.2023.1.158eng

UDC: 633.111.1:632.4:632.937.15:581.1 

The work was carried out within the framework of the state task in accordance with the VIR thematic plan under project No. 0481-2022-0001 “Structuring and unlocking the potential of hereditary variability of the world collection of grain and cereal crops of the VIR for the development of an optimized gene bank and rational use in breeding and crop production”



I.I. Novikova1, E.V. Popova1, L.E. Kolesnikov2,
Yu.R. Kolesnikova3, S.S. Chekurova2

1All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail (corresponding author ✉),;
2Saint Petersburg State Agrarian University, 2, Sankt-Peterburgskoe sh., St. Petersburg, 196601 Russia, e-mail,;
3Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail

Novikova I.I.
Kolesnikova Yu.R.
Popova E.V.
Chekurova S.S.
Kolesnikov L.E.

Final revision received April 13, 2022
Accepted 15 June, 2022

The application of useful microorganisms and biologically active molecules lies at the basis of the modern concept of agroecosystems phytosanitary optimization. The increase of the protective properties of preparative forms, which include phytopathogen antagonists and chitosan, is due to the ability of chitosan polysaccharide to induce systemic plant disease resistance. In addition, multifunctional compositions with multiple action mechanisms, effective against a wide range of phytopathogens, can positively effect on the functional state of plants, including their photosynthetic activity, quantitative and qualitative changes in the entire pigment system, which often reflect the nature of adaptive reactions under stress. However, studies of changes in the photosynthetic apparatus in relation to the disease resistance and plants productivity under the influence of such compositions are extremely few. It was shown for the first time that the multifunctional complexes Vitaplan, KZh + Chitosan II and Vitaplan, KS + Chitosan II significantly increase wheat productivity and disease resistance, while the content of chlorophylls a and b in leaves also turned out to be the highest. The ratio of chlorophylls a + b and carotenoids content, which serves as one of the indicators of plant stress resistance, was maximal when using the Vitaplan, KZh + Chitosan II complex. This study aimes to estimate the potential wheat productivity by morphometric indicators of plant development, susceptibility to root rot, brown and yellow rust, powdery mildew, Septoria leaf blotch, and the content of chlorophylls a, b, carotenoids in leaves when using multifunctional biopreparations and complexes combining the useful properties of microorganisms — antagonists of phytopathogens and chitosan as plant disease resistance activator. Seeds of the Leningradka 6 cultivar (k-64900, VIR collection) of soft spring wheat (Triticum aestivum L.) were treated before sowing with biopreparations based on Bacillus subtilis strains VKM B-2604D and B. subtilis VKM B-2605D Vitaplan, SP, Vitaplan, KZh and the complexes Vitaplan, KZh + Chitosan II, Vitaplan, KS + Chitosan II. In the field during the growing season, plants were sprayed with the same preparations vs. control (without treatment). In general, the used complexes turned out to be more effective than biopreparations by 16.2 %. The multifunctional compositions application significantly reduced wheat plants harm by diseases complex (by 17.9 % at p < 0.05). The highest values of potential productivity (0.94±0.02 g/plant) and chlorophyll a (1.32±0.02 mg/g) and b (2.15± 0.04 mg/g) content in the leaves were detected when using the multifunctional complex Vitaplan, KZh + Chitosan II, which exceeded the control by 57.1 %, 16.7 % and 4.3 %, the other variants — by 19,7 %, 23,7 %, and 11,0 %. Differences in the content of chlorophyll a and chlorophyll b photosynthetic pigments in wheat flag leaves were revealed when using the multifunctional complex Vitaplan, KZh + Chitosan II compared to biopreparations by 16.8 %, 3.7 % and 2.0 %, with Vitaplan, KS + Chitosan II — by 1.1 %, 17.7 %, and 27.0 %, respectively. The strongest correlation was found between the chlorophyll b content in the flag leaves and wheat productivity (r = 0.69, p = 0.03), the chlorophyll b content in the flag leaves and the grains number per spike (r = 0.79, p = 0.006), the grains weight per spike and the spike weight (r = 0.69, p = 0.03; r = 0.72, p = 0.02). Correlations between a decrease in the yellow rust development and an increase in the chlorophylls a and b content in leaves were found (r = 0.66, p = 0.04; r = 0.87; p = 0.005). The highest values of the chlorophyll a to chlorophyll b ratio in the leaves compared to control occurred when using Vitaplan, KZh + Chitosan II and Vitaplan, KS + Chitosan II complexes. The ratio of the chlorophylls a and b to the carotenoid pigments, as an indicator of plant resistance to negative external factors, also reached maximum values with Vitaplan, KZh + Chitosan II. According to the indicators sum, the most promising for use in wheat cultivation is the multifunctional complex Vitaplan, KZh + Chitosan II which has a pronounced growth-stimulating and protective effect on plants upon preventive use.

Keywords: Triticum aestivum, soft wheat, multifunctional biological products, chlorophyll a, chlorophyll b, carotenoids, wheat productivity, wheat diseases, brown rust, yellow rust, septoriosis, powdery mildew, root rot.



  1. Novikova I.I., Titova Yu.A., Boykova I.V., Zeyruk V.N., Krasnobaeva I.L., Serova T.A. Vestnik zashchity rasteniy, 2017, 3(93): 16-23 (in Russ.).
  2. Tamehiro N., Okamoto-Hosoya Y., Okamoto S., Ubukata M., Hamada M., Naganawa H., Ochi K. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrobial Agents and Chemotherapy Journal, 2002, 46(2): 315-320 CrossRef
  3. Tojo S., Tanaka Y., Ochi K. Activation of antibiotic production in Bacillus spp. by cumulative drug resistance mutations. Antimicrobial Agents and Chemotherapy Journal, 2015, 59(12): 7799-7804 CrossRef
  4. Hamdache A., Lamarti A., Aleu J., Collado I.G. Non-peptide metabolites from the genus Bacillus. Journal of Natural Products, 2011, 74(4): 893-899 CrossRef
  5. Quardros C.P., Teixeira Duarte M.C., Pastore G.M. Biological activities of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum. Brazilian Journal of Microbiology, 2011, 42: 354-361 CrossRef
  6. Aktuganov G.Е., Galimzyanova N.F. Melent’ev A.I., Kuz’mina L.Yu. Mikrobiologiya, 2007, 76: 471-479 (in Russ.).
  7. Kloepper J.W., Gutierrez-Estrada A., McInroy J.A.Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 2009, 53(2): 159-167 CrossRef
  8. Ohkama-Ohtsu N., Wasaki J. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant and Cell Physiology, 2010, 51(8): 1255-1264 CrossRef
  9. Dodd I.C., Zinovkina N.Y., Safronova V.I., Belimov A.A. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 2010, 157: 361-379 CrossRef
  10. Forchetti G., Masciarelli O., Alemano S., Alvarez D., Abdala G. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 2007, 76(5): 1145-1152 CrossRef
  11. Kudoyarova G.R., Melentiev A.I., Martynenko E.V., Timergalina L.N., Arkhipova T.N., Shendel G.V., Kuz’mina L.Y., Dodd I.C., Veselov S.Y. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiology and Biochemistry, 2014, 83: 285-291 CrossRef
  12. Sivasakthi S., Kanchana D., Usharani G., Saranraj P. Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. International Journal of Microbiological Research, 2013, 4(3): 227-233 CrossRef
  13. Kumar P., Dubey R.C., Maheshwari D.K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 2012, 167: 493-499 CrossRef
  14. Maksimov I.V., Veselova S.V., Nuzhnaya T.V., Sarvarova E.R., Khayrullin R.M. Fiziologiya rasteniy, 2015, 62(6): 763-775 CrossRef (in Russ.).
  15. Kolesnikov L.E., Novikova I.I., Surin V.G., Popova E.V., Priyatkin N.S., Kolesnikova Yu.R. Evaluation of the effectiveness of the combined use of chitosan and antagonist microbes in protection of spring soft wheat from diseases using spectrometric analysis. Applied Biochemistry and Microbiology, 2018, 54(5): 546-552 CrossRef
  16. El Amerany F., Meddich A., Wahbi S., Porzel A, Taourirte M., Rhazi M., Hause B. Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. International Journal of Molecular Sciences, 2020, 21(2): 535 CrossRef
  17. Yang H., Zhang Y., Zhou F., Guo J., Tang J., Han Y., Fu C. Preparation, bioactivities and applications in food industry of chitosan-based maillard products: A review. Molecules, 2021, 26(1): 166 CrossRef
  18. Tyuterev S.L. Prirodnye i sinteticheskie induktory ustoychivosti rasteniy k boleznyam [Natural and synthetic inducers of plant disease resistance]. St. Petersburg, 2014 (in Russ.).
  19. Badawy M.E.I., Rabea E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, 2011: Article ID 460381 CrossRef
  20. Abdul Malik N.A., Kumar I.S., Nadarajah K. Elicitor and receptor molecules: orchestrators of plant defense and immunity, review. International Journal of Molecular Sciences, 2020, 21(3): 963 CrossRef
  21. Lopez-Moya F., Suarez-Fernandez M., Lopez-Llorca L.V. Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences, 2019,20(2): 332CrossRef
  22. Meenakshi T., Baldev S.S., Role of elisitors in inducing resistanse in plant against pathogen infection: a review. ISRN Biochemistry, 2013, 2013: Article ID 762 CrossRef
  23. Iriti M., Faoro F. Chitosan as a MAMP, searching for a PRR. Plant Signaling and Behavior, 2009, 4(1): 66-68 CrossRef
  24. Deepmala K., Hemantaranjan A., Bharti S., Nishant Bhanu A. A future perspective in crop protection: chitosan and its oligosaccharides. Advances in Plants & Agriculture Research, 2014, 1(1): 23-30 CrossRef
  25. Bigeard J., Colcombet J., Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 2015, 8(4): 521-539 CrossRef
  26. Silva W.B., Silva G.M.C., Santana D.B., Salvador A.R., Medeiros D.B., Belghith I., Misobutsi G.P. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry, 2018, 242: 232-238 CrossRef
  27. Gai Q.Y., Jiao J., Wang X., Liu J., Wang Z., Fu Y.J. Chitosan promoting formononetin and calycosin accumulation in Astragalus membranaceus hairy root cultures via mitogen-activated protein kinase signaling cascades. Scientific Reports, 2019, 9: 10367 CrossRef
  28. Li Y., Zhang Q., Ou L., Ji D., Liu T., Lan R., Li X., Jin L. Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide. Agronomy, 2020, 10: 915 CrossRef
  29. Dubin A., Likhanov A., Klyachenko O., Subin A., Kluvadenko A. Effect of chitosan formulations of different biological origin on tobacco (Nicotiana tabacum L.) PR-genes expression. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 9(6): 1141-1144 CrossRef
  30. Chun S.C., Chandrasekaran M. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. International Journal of Biological Macromolecules, 2019, 125: 948-954 CrossRef
  31. Liu J., Zhang X., Kennedy J., Jiang M., Cai Q., Wu X. Chitosan induces resistance to tuber rot in stored potato caused by Alternaria tenuissima. International Journal of Biological Macromolecules, 2019, 140: 851-857 CrossRef
  32. Jiang X., Lin H., Lin M., Chen Y., Wang H., Lin Y., Lin Y. A novel chitosan formulation treatment induces disease resistance of harvested litchi fruit to Peronophythora litchii in association with ROS metabolism. Food Chemistry, 2018, 266: 299-308 CrossRef
  33. Xing K., Zhu X., Peng X., Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 2015, 35(2): 569-588 CrossRef
  34. El Hadrami A., Adam L.R., El Hardrami I., Daayf F. Chitosan in plant protection. Marine Drugs, 2010, 8(4): 968-987 CrossRef
  35. Yin H., Du Y., Dong Z. Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Frontiers in Plant Science, 2016, 7: 522 CrossRef
  36. Torres-Rodriguez J.A., Reyes-Perez J.J., Castellanos T., Angulo C., Quinones-Aguilar E.E., Hernandez-Montiel L.G. A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: chitosan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(1): 12231 CrossRef
  37. Zhang Z., Li K., Liu S., Xing R., Yu H.,  Chen X., Li P.  Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydrate Polymers, 2016, 138: 27-33 CrossRef
  38. dos Reis C.O., Magalhaes P.C., Avila R.G., Almeida L.G., Rabelo M., Carvalho D.T., Cabral D.F., Karam D., de Sousa T.C. Action of N-succinyl and N,O-dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. Journal of Plant Growth Regulation, 2019, 38: 619-630 CrossRef
  39. Mondal M.M.A., Malek M.A., Puteh A.B., Ismail M.R. Foliar application of chitosan on growth and yield attributes of mungbean (Vigna radiata (L.) Wilczek). Bangladesh Journal of Botany. 2013, 42(1): 179-183 CrossRef
  40. Khan H., Basit A., Alam M., Ahmad I., Ullah Iz., Alam N., Ullah In., Khalid M.A., Shair M., ul Ain N. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pakistan Journal of Agricultural Research, 2020, 33(1): 27-41 CrossRef
  41. Rutairat P., Chonlada D.T. Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Australian Journal of Crop Science, 2017, 11(5): 624-630 CrossRef
  42. Zeng D., Luo X. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science, 2012, 2: 282-288 CrossRef
  43. Dudenko N.V., Andrianova Yu.E., Maksyutova N.N. Fiziologiya rasteniy, 2002, 49(5): 684-687 (in Russ.).
  44. Pryadkina G.A. Sortoizuchenie i okhrana prav na sorta rasteniy, 2018, 14(1): 97-108 CrossRef (in Russ.).
  45. Furbank R.T., Quick W.P., Sirault X.R.R. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: prospects, progress and challenges. Field Crops Research, 2015, 182: 19-29 CrossRef
  46. Gu J., Yin X., Stomph T.J., Struik P.C. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell and Environment, 2014, 37(1): 22-34 CrossRef
  47. Voitsekhovskaja O.V., Tyutereva E.V. Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. Journal of Plant Physiology, 2015, 189: 51-64 CrossRef
  48. Tyutereva E.V., Dmitrieva V.A., Voytsekhovskaya O.V. Chlorophyll b as a source of signals steering plant development (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(5): 843-855 CrossRef
  49. Tyutereva E.V., Ivanova A.N., Voytsekhovskaya O.V. Uspekhi sovremennoy biologii, 2014, 134: 249-256 (in Russ.).
  50. Mamadyusupova M.G., Saboiev I.A., Nigmonov M., Nasyrova F.Yu., Aliev K. The influence of stress factors on the content of photosynthetic pigments and biometric indicators in wheat varieties and their wild relatives. News of the Academy of Sciences of the Republic Tajikistan, 2012, 3(180): 35-42.
  51. Sharma A., Kumar V., Shahzad B., Ramakrishnan M., Shreeya Bali A., Yadav P., Rehman A., Daman R., Renu P., Gagan Preet B., Sidhu S., Handa N., Khanna K., Kohli S., Yuan H., Zheng Bi., Kapoor D., Bakshi P., Khan E.A., Kumar Thukral A. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation,2020, 39(2): 509-531 CrossRef
  52. Muhammad I., Shalmani A., Ali M., Yang Q.-H., Ahmad H., Li F.B. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 2021, 11: 615942 CrossRef
  53. Abdullaev Kh.A., Giyasidinov B.B., Solieva B.A., Mirakilov Kh.M. Tezisy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem i Shkoly dlya molodykh uchenykh «Rasteniya v usloviyakh global’nykh i lokal’nykh prirodno-klimaticheskikh i antropogennykh vozdeystviy» (21-26 sentyabrya 2015 g.) [Abstracts of the All-Russia Conference with international participation and the School for young scientists "Plants under the conditions of global and local climatic and anthropogenic influences" (September 21-26, 2015)]. Petrozavodsk, 2015: 19 (in Russ.).
  54. Andrianova Yu.E., Tarchevskiy I.A. Khlorofill i produktivnost’ rasteniy [Chlorophyll and plant productivity]. Moscow, 2000 (in Russ.).
  55. Yurin V.M. Fiziologiya rasteniy [Plant physiology]. Minsk, 2010 (in Russ.).
  56. Mokronosov A.T., Gavrilenko V.F., Zhigalova T.V. Fotosintez. Fiziologo-еkologicheskie i biokhimicheskie aspekty [Photosynthesis. Physiological, ecological and biochemical aspects]. Moscow, 2006 (in Russ.).
  57. Amunova O.S., Lisitsyn E.M. Samarskiy nauchnyy vestnik, 2019, 8(3): 19-25 CrossRef (in Russ.).
  58. Sui N., Li M., Meng Q.-W., Tian J., Zhao S. Photosynthetic characteristics of a super high yield cultivar of winter wheat during late grown period. Agricultural Sciences in China, 2010, 9(3): 346-354 CrossRef
  59. Morgun V.V., Pryadkina G.A. Fiziologiya rasteniy i genetika, 2014, 46(4): 279-301 (in Russ.).
  60. Martirosyan L.Yu., Kosobryukhov A.A., Martirosyan V.V., Martirosyan Yu.Ts. The influence of different light sources on photosynthetic performance and productivity of Cucumis sativus L. hybrid Tristan F1 in aeroponic phytotron facilities. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(5): 934-947 CrossRef
  61. Kornilina V.V. Fundamental’nye issledovaniya, 2012, 9(3): 568-572 (in Russ.).
  62. Muzzarelli R.A.A. Chitin. Pergamon Press, Oxford, 1977.
  63. Kolesnikov L.E., Popova Е.V., Novikova I.I., Priyatkin N.S., Arkhipov M.V., Kolesnikova Yu.R., Potrakhov N.N., Van Duijn B., Gusarenko A.S. Multifunctional biologics which combine microbial anti-fungal strains with chitosan improve soft wheat (Triticum aestivum L.) yield and grain quality. Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2019, 54(5): 1024-1040 CrossRef
  64. Zakharova N.N., Zakharov N.G. Vestnik Ul’yanovskoy gosudarstvennoy sel’skokhozyaystvennoy akademii, 2016, 4(36): 17-23 CrossRef (in Russ.).
  65. Zadoks J.C., Chang T.T., Konzak C.F. A decimal code for the growth stages of cereals. Weed Research, 1974, 14: 415-421 CrossRef
  66. Dmitriev N.N., Khusnidinov Sh.K. Vestnik KrasGAU, 2016, 7(118): 88-93 (in Russ.).
  67. Popov Yu.V. Zashchita i karantin rasteniy, 2011, 8: 45-47 (in Russ.).
  68. Novikova I.I., Popova Е.V., Kovalenko N.M., Krasnobaeva I.L. Vestnik zashchity rasteniy, 2022, 105(3): 122-134 CrossRef (in Russ.).
  69. Ermakov A.I., Arasimovich V.V., Yarosh N.P. Metody biokhimicheskogo issledovaniya rasteniy [Methods of research in plant biochemistry]. Leningrad, 1987 (in Russ.).
  70. Kalinina A.V., Lyashcheva S.V. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, 20(2): 286-290 (in Russ.).
  71. Khalil R.R., Bassiouny F.M., El-Dougdoug K.A., Abo-Elmaty S., Yousef M.S. A dramatic physiological and anatomical changes of tomato plants infecting with tomato yellow leaf curl germinivirus. Journal of Agricultural Technology, 2014, 10(5): 1213-1229.
  72. Akinshina N.G., Rashidova D.K., Azizov A.A. Seed encapsulation in chitosan and its derivatives restores levels of chlorophyll and photosynthesis in wilt-affected cotton (Gossypium L., 1753) plants. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(5): 696-704 CrossRef
  73. Kalinina E.A. Vliyanie biologicheski aktivnykh soedineniy na rost, fotosintez i produktivnost’ kukuruzy (Zea mays L.). Izvestiya TSKh, 2009, 3: 181-186 (in Russ.).
  74. Kilian M., Steiner U., Krebs B., Junge H., Schmeiedeknecht G., Hain R. FZB24® Bacillus subtilis — mode of action of microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer, 2000, 1: 72-93.
  75. Arkhipova T.N., Prinsen E., Veselov S.U., Martynenko E.V., Melentiev A.I., Kudoyarova G.R. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 2007, 292: 305-315 CrossRef
  76. Cohen A.C., Travaglia C.N., Bottini R., Piccoli P.N. Paticipation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 2009, 87: 455-462 CrossRef
  77. De Meyer G., Audenaert K., Hufte M. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. European Journal of Plant Pathology, 1999, 105: 513-517 CrossRef
  78. Belimov A.A., Dodd I.C., Safronova V.I., Dumova V.A., Shaposhnikov A.I., Ladatko A.G., Davies W.J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiology and Biochemistry, 2014, 74: 84-91 CrossRef
  79. Porcel R., Zamarreso A.M., Garcia-Mina J.M., Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 2014, 14: 36 CrossRef
  80. Pavlyushin V.A., Novikova I.I., Boykova I.V. Microbiological control in phytosanitary optimization technologies for agroecosystems: research and practice (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(3): 421-438 CrossRef
  81. Lizarraga-Pauli E.G., Torres-Pacheco I., Moreno Martinez E., Miranda-Castro S.P. Chitosan application in maize (Zea mays) to sounteract the effects of abiotic stress at seedling level. African Journal of Biotechnology, 2011, 10(34): 6439-6446 CrossRef
  82. Mondal M.M.A., Puteh A.B., Dafader N.C., Rafii M.Y., Malek M.A. Foliar application of chitosan improves growth and yield in maize. Journal of Food Agriculture and Environment, 2013, 11: 520-523.
  83. Martins M., Carvalho M., Carvalho D.T., Barbosa S., Doriguetto A.C., Magalhaes P.C., Ribeiro C. Physicochemical characterization of chitosan and its effects on early growth, cell cycle and root anatomy of transgenic and non-transgenic maize hybrids. Australian Journql of Crop Science, 2018, 12: 56 CrossRef
  84. Ibrahim E.A., Ramadan W.A. Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci. Hort., 2015, 184: 101-105 CrossRef
  85. Wang X., Vigjevic M., Liu F., Jacobsen S., Jiang D., Wollenweber B. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses during grain filling in spring wheat (Triticum aestivum L. cv. Vinjett). Plant Growth Regulation, 2015, 75: 677-687 CrossRef
  86. Pongprayoon W., Roytrakul S., Pichayangkura R., Chadchawan S. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regulation, 2013, 70: 159-173 CrossRef
  87. Costales M., Falcon R. Combination of application forms of chitosan in the development of biofertilized soybean. Cultivos Tropicales, 2018, 39(3): 71-79. 
  88. Chamnanmanoontham N., Pongprayoon W., Pichayangkura R., Roytrakul S., Chadchawan S. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regulation, 2015, 75: 101-114 CrossRef
  89. Farouk S., Amany A.R. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 2012, 14: 14-26 CrossRef
  90. Ashaeva O.V., Monin D.S. Vestnik Nizhegorodskoy gosudarstvennoy sel’skokhozyaystvennoy akademii, 2012, 1: 111-113 (in Russ.).
  91. Shehata S.A., Fawzy Z.F., El-Ramady H.R. Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Australian Journal of Basic and Applied Sciences, 2012, 6(4): 63-71. 







Full article PDF (Rus)

Full article PDF (Eng)