doi: 10.15389/agrobiology.2023.1.60eng

UDC: 631.62:58.05:551.58.056:631.421



M.V. Nikolaev

Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail (✉ corresponding author)

Nikolaev M.V.

Received January 13, 2023

The impact of climate change on agricultural sustainability has become a particularly acute and global problem. The human activity increasingly significant contributes to such changes. Therefore, investigations have been intensified worldwide to assess the regional agro-climatic consequences of global climate change in order to find ways to adapt to them. This work aimed to assess the vulnerability and adaptation of field crops to a changing weather in the zone of drained lands of the European Non- Chernozem Region, which is characterized by a humid climate and limited thermal resources. Although the thermal conditions for growing crops here are becoming more favorable due to the increase in heat supply, more frequent incessant and heavy rains lead to a sharp overwetting of crops, causing significant crop shortages and quality losses. The novelty of our study lies in the evaluation of a shift in the boundaries of vulnerable territories. The conclusions we came to resulted from the subdivision of the zone into subzones by natural environment attributes, given changes in existing agrolandscapes and farming systems in latitudinal zonality, including thermally deficient areas. In the European Non-Chernozem Region of Russia, with a warming climate, the altitudes of drained lands were shown to affect the magnitude and frequency of heavy precipitation and should be taken into account when regionalizing adaptation measures and strategies, which is done for the this zone for the first time. The paper submits the analysis of thermal changes and atmospheric moisture changes during grain formation in winter cereals and fodder cereals and during intensive accumulation of biomass of silage and hay crops for two periods that differ in the degree of anthropogenic influence on the climate, 1945-1980 and 1981-2017. Using a set of analytical methods (selection of agro-climatic indicators, frequency analysis) and mathematical methods (trend analysis and smoothing of time series, functional analysis, etc.), we revealed that the coverage of areas subject to an increasing risk of overwetting of crops is expanding to the north. An increase in high temperatures leads to an intensification of evaporation and, as a result, to an increased convection. Based on simulation modeling of agro-climatic conditions until 2030, it is also shown that in the future, the northern and marshy areas are the most vulnerable to sudden overwetting. That is, along with the atmospheric circulation (i.e., a higher cyclonic activity), the thermal factor combined with the moisture content of the underlying surface in the soil contribute more and more significantly to the aggravation of overwetting. Soil texture also plays an important role in the manifestation of the effects of atmospheric overwetting on crops. Adaptation of field crop growing to climate change includes a set of measures aimed at effective management of interrelated changes in the thermal regime in the active layer of the atmosphere and the water balance components of the underlying surface and upper layers of the soil. The adaptation measures should regard the agro-climatic, soil and landscape features of the natural and agricultural subzones of the European Non-Chernozem Region drained lands and consists both in optimizing reclamation techniques and in improving crop cultivation technologies and land use planning. It is also extremely important that elevated concentrations of technogenic pollutants in the atmosphere have a negative impact on the quantity and quality of precipitation. Therefore, targeted monitoring of compliance with environmental standards is mandatory.

Keywords: European Non-Chernozem Region, climate change, drained lands, vulnerability, adaptation.



  1. Core Writing Team. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. R.K. Pachauri, L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 2014.
  2. Climate extremes and their implications for impact and risk assessment. J. Sillman, S. Sippel, S. Russo (eds.). Elsevier, Amsterdam, 2020.
  3. Vogel E., Meyer R. Chapter 3. Climate change, climate extremes, and global food production — adaptation in the agricultural sector. In: Resilience. The science of adaptation to climate change. Z. Zommers, K. Alverson (eds.). Elsevier,2018: 31-49 CrossRef
  4. Regoto P., Dereszynski C., Chou S.C., Bazzanela A.C. Observed changes in air temperature and precipitation extremes over Brazil. International Journal of Climatology,2021,41(11): 5125-5142CrossRef
  5. Dong Z., Wang L., Sun Y., Hu T., Limsakul A., Singhruck  P., Pimonsree S. Heatwaves in Southeast Asia and their changes in a warmer world. Earth's Future,2021, 9(7): e2021EF001992 CrossRef
  6. Walsh K.J.E., Camargo S.J., Knutson T.R., Kossin J., Lee T.-C., Murakami H., Patricola C. Tropical cyclones and climate change.Tropical Cyclone Research and Review, 2019, 8(4): 240-250 CrossRef
  7. Rosa M.B., Satyamurty P.I., Ferreira N.J., Silva L.T. A comparative study of intense surface cyclones off the coasts of southeastern Brazil and Mozambique. International Journal of Climatology, 2019, 39(8): 3523-3542 CrossRef
  8. Burke C., Stott R. Impact of anthropogenic climate change on the East Asian summer monsoon. Journal of Climate,2017, 30(14): 5205-5220 CrossRef
  9. Kjellström E., Hansen F., Belušić D. Contributions from changing large-scale atmospheric conditions to changes in scandinavian temperature and precipitation between two climate normals. Tellus A: Dynamic Meteorology and Oceanography,2022,74(1): 204-221 CrossRef
  10. Pepler A.S., Dowdy A.J., Hope P. The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Climate Dynamics, 2021, 56: 289-2302 CrossRef
  11. Landshaftnaya karta SSSR /Pod redaktsiey A.G. Isachenko [Landscape map of the USSR. A.G. Isachenko(ed.)]. Moscow, 1988 (in Russ.).
  12. Pochvennaya karta RSFSR/Pod redaktsiey V.M. Fridland [Soil map of the RSFSR. V.M. Fridland (ed.)]. Moscow, 1988 (in Russ.).
  13. Kiryushin V.I. Teoriya adaptivno-landshaftnogo zemledeliya i proektirovanie agrolandshaftov [Theoretical basis of adaptive landscape agriculture and design of agricultural landscapes]. Moscow, 2011 (in Russ.).
  14. Kiryushin V.I. Kontseptsiya razvitiya zemledeliya v Nechernozem’e [The concept of the development of agriculture in the Non-Chernozem region]. St. Petersburg, 2020 (in Russ.).
  15. Selyaninov G.T. V sbornike: Voprosy agroklimaticheskogo rayonirovaniya SSSR [In: Agro-climatic zoning of the USSR]. Moscow, 1958: 7-13 (in Russ.).
  16. Nikolaev M.V. Izvestiya Russkogo geograficheskogo obshchestva, 2018, 150(6): 1-14 CrossRef (in Russ.).
  17. Wibig J. Heat waves in Poland in the period 1951-2015: trends, patterns and driving factors. Meteorology, Hydrology and Water Management, 2018, 6(1): 37-45 CrossRef
  18. Murav’ev A.V., Kulikova I.A. Meteorologiya i gidrologiya, 2011, 5: 5-16 (in Russ.).
  19. European Climate Assessment & Dataset KNMI Climate Explorer (climatic indices). Available: No date.
  20. Franzke C., Feldstein S.B. The continuum and dynamics of Northern Hemisphere teleconnection patterns. Journal of Atmospheric Science, 2005, 62(9): 3250-3267 CrossRef
  21. Nesterov E.S. Meteorologiya i gidrologiya,2009, 12: 32-40 (in Russ.).
  22. Nesterov E.S. Severoatlanticheskoe kolebanie: atmosfera i okean [North Atlantic oscillation: atmosphere and ocean]. Moscow, 2013 (in Russ.).
  23. National Aeronautics and Space Administration Goddard Institute for Space Studies. GISS surface temperature analysis (GISTEMP v4). Available: http:/ No date. 
  24. European Environment Agency. Wet and dry — heavy precipitation and river floods. Available: No date.
  25. Fischer E.M., Knutti R. Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 2016: 986-991 CrossRef
  26. Hawcroft M., Walsh E., Hodges K., Zappa G. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environmental Research Letters, 2018, 13(12): 124006 CrossRef
  27. Rajczak J., Schär C. Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations. Journal of Geophysical Research: Atmospheres, 2017, 122(20): 773-800 CrossRef
  28. Gringof I.G., Kleshchenko A.D. Osnovy sel’skokhozyaystvennoy meteorologii. Tom 1 [Fundamentals of agricultural meteorology. Volume 1]. Obninsk, 2011: 601-609 (in Russ.).
  29. Selyaninov G.T. V sbornike: Rastenievodstvo SSSR. Tom1 [In: Crop production of the USSR. Volume 1]. Moscow, 1933: 1-15 (in Russ.).
  30. Nikolaev M.V. Izvestiya Russkogo geograficheskogo obshchestva, 2021, 153(4): 47-67 CrossRef (in Russ.).
  31. Massonnet F., Ménégoz M., Acosta M., Yepes-Arbós X., Exarchou E., Doblas-Reyes F.J. Replicability of the EC-Earth3 Earth system model under a change in computing environment. Geosci. Model Dev.,2020,13: 1165-1178 CrossRef
  32. Müller W.A., Jungclaus J.H., Mauritsen T., Baehr J., Bittner M., Budich R., Bunzel F., Esch M., Ghosh R., Haak H., Ilyina T., Kleine T., Kornblueh L., Li H., Modali K., Notz D., Pohlmann H., Roeckner E., Stemmler I., Tian F., Marotzke J. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems,2018, 10(7): 1383-1413 CrossRef
  33. Swart N.C., Cole J.N.S., Kharin V.V., Lazare M., Scinocca J.F., Gillett N.P., Anstey J., Arora V., Christian J.R., Hanna S., Jiao Y., Lee W.G., Majaess F., Saenko O.A., Seiler C., Seinen C., Shao A., Sigmond M., Solheim L., von Salzen K., Yang D., Winter B. The Canadian Earth System Model version 5 (Can ESM5.03) Geosci. Model Dev.,2019, 12(11): 4823-4873 CrossRef
  34. Lind P., Belušić D., Médus E., Dobler A., Pedersen R.A., Wang F., Matte D., Kjellström E., Landgren O., Lindstedt D., Christensen O.B., Christensen J.H. Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model. Climate Dynamics, 2023 CrossRef
  35. Shtykov V.I., Yanko Yu.G., Uskov I.B., Nikolaev M.V. Sbornik materialov XVIII Mezhdunarodnogo еkologicheskogo foruma «Den’ Baltiyskogo morya» [Proceedinfs of the XVIII International Environmental Forum “Baltic Sea Day”]. St. Petersburg, 2017: 63-64 (in Russ.).
  36. Harris L.I., Roulet N.T., Moore T.R. Drainage reduces the resilience of a boreal peatland. Environ. Res. Commun., 2020, 2: 065001CrossRef
  37. Uskov I.B., Nikolaev M.V., Yanko Yu.G. Sbornik materialov XVIII Mezhdunarodnogo еkologicheskogo foruma «Den’ Baltiyskogo morya» [Proceedinfs of the XVIII International Environmental Forum “Baltic Sea Day”]. St. Petersburg, 2016: 49-51 (in Russ.).
  38. Clubb F.J., Mudd S.M., Attal M., Milodowski D.T., Grieve S.W.D. The relationship between drainage density, erosion rate, and hilltop curvature: implications for sediment transport processes. J. Geophys. Res. Earth Surf., 2016, 121(10): 1724-1745CrossRef
  39. Markov B.S. Melioratsiya poym Nechernozemnoy zony [Reclamation of the floodplains of the Non-Chernozem zone]. Moscow, 1973 (in Russ.).
  40. Abendroth L.J., Chighladze G., Frankenberger J.R., Bowling L.C., Helmers M.J., Herzmann D.E., Jia X., Kjaersgaard J., Pease L.A., Reinhart B.D., Strock J., Youssef M. Paired field and water measurements from drainage management practices in row-crop agriculture. Sci. Data.,2022, 9: 257CrossRef
  41. Castellano M.J., Archontoulis S.V., Helmers M.J., Poffenbarger H.J., Six J. Sustainable intensification of agricultural drainage. Nat. Sustain.,2019, 2: 914-921 CrossRef
  42. Ceglar A., Zampieri M., Toreti A., Dentener F. Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future,2019, 7(9): 1088-1101 CrossRef
  43. Peltonen-Sainio P., Jauhiainen L. Large zonal and temporal shifts in crops and cultivars coincide with warmer growing seasons in Finland. Regional Environmental Change,2020, 20: 89 CrossRef
  44. Trnka M., Balek J., Brázdil R., Dubrovský M., Eitzinger J., Hlavinka P., Chuchma F., Možný M., Prášil I., Růžek P., Semerádová D., Štěpánek P., Zahradníček P., Žalud Z. Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant Soil Environ., 2021, 67(3): 154-163 CrossRef
  45. Aryal J.P., Sapkota T.B., Khurana R., Khatri-Chhetri A., Rahut D.B., Jat M.L. Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ. Dev. Sustain.,2020, 22: 5045-5075 CrossRef
  46. Yakushev V.P., Osipov A.I. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2013, 30: 68-72 (in Russ.).
  47. Chesnokov Yu.V., Kocherina N.V., Kosolapov V.M. Molekulyarnye markery v populyatsionnoy genetike i selektsii [Molecular markers in population genetics and breeding]. Moscow, 2019 (in Russ.).
  48. Arkhipov M.V., Gusakova L.P., Velikanov L.P., Vilichko A.K., Zheludkov A.G., Alferov V.B. Metodika kompleksnoy otsenki biologicheskoy i khozyaystvennoy prigodnosti semennogo materiala (metodicheskie ukazaniya) [A comprehensive assessment of the biological and economic suitability of seed material (guidelines)]. St. Petersburg, 2013 (in Russ.).
  49. Sonwani S., Maurya V. Chapter 7. Impact of air pollution on the environment and economy. In: Air pollution: sources, impacts and controls. P. Saxena, V. Naik (eds.). CABI Publisher, Oxford, U.K., 2019: 113-135 CrossRef
  50. Walker T.R. Effectiveness of the national pollutant release inventory as a policy tool to curb atmospheric industrial emissions in Canada. Pollutants, 2022, 2(3): 289-305 CrossRef
  51. Canada in a changing climate: national issues report. F.J. Warren, N. Lulham (eds.). New York, 2021 CrossRef
  52. Woods B.A., Nielsen J., Pedersen A.B., Kristofersen N. Farmers’ perceptions of climate change and their likely responses in Danish agriculture. Land Use Policy, 2017, 65: 109-120 CrossRef
  53. Ibrahim M.A., Johansson M. Attitudes to climate change adaptation in agriculture – A case study of Öland, Sweden. Journal of Rural Studies, 2021, 86: 1-15 CrossRef
  54. Dalla Marta A., Eitzinger J., Kersebaum K.C., Todorovic M., Altobelli F. Assessment and monitoring of crop water use and productivity in response to climate change. The Journal of Agricultural Science, 2018, 156(5): 575-576 CrossRef
  55. Pohanková E., Hlavinka P., Kersebaum K.-C., Rodríguez A., Balek J., Bednařík M., Dubrovský M., Gobin A., Hoogenboom G., Moriondo M., Nendel C., Olesen J.E., Rötter R.P., Ruiz-Ramos M., Shelia V., Stella T., Hoffmann M.P., Takáč J., Eitzinger J., Dibari C., Ferrise R., Bláhová M., Trnka M. Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites. European Journal of Agronomy, 2022, 134: 126446 CrossRef
  56. Lalić B., Firanj Sremac A., Dekić L, Eitzinger J., Perišić D. Seasonal forecasting of green water components and crop yields of winter wheat in Serbia and Austria. The Journal of Agricultural Science, 2018, 156(5): 645-657 CrossRef







Full article PDF (Rus)