PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.1.158eng

UDC: 579.64:631.811.2

Acknowledgements:
Supported financially from the Russian Foundation for Basic Research (the project No. 19-016-00197)

 

THE STUDY OF Agrobacterium radiobacter 10 AND Pseudomonas fluorescens PG7 PHOSPHATE-MOBILIZING ABILITIES in vitro

S.V. Zheleznyakov, T.V. Kalinina, V.K. Deeva, Yu.V. Laktionov,
L.M. Jacobi

All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail krosh15_02@mail.ru, sotvk@yandex.ru, vdvalerie21@mail.ru, laktionov@list.ru, lidija-jacobi@yandex.ru ( corresponding author)

ORCID:
Zheleznyakov S.V. orcid.org/0000-0001-5321-4051
Laktionov Y.V. orcid.org/0000-0001-6241-0273
Kalinina T.V. orcid.org/0000-0003-1255-6498
Jacobi L.M. orcid.org/0000-0003-0387-5024
Deeva V.K. orcid.org/0000-0001-8387-2602

November 15, 2021

 

There is a need to improve the phosphorus nutrition of agricultural plants due to the mobilization of phosphorus from hard-to-reach soil compounds and fertilizers by useful rhizosphere microorganisms (PGPB). For this purpose, phosphate-mobilizing bacteria are being selected to create biologicals with a fertilizing action. Here, our research data for the first time show that the strain Agrobacterium radiobacter 10 can metabolize phytate to utilize it as a source of carbon and energy in the absence of other sources, and the strain Pseudomonas chlororaphis PG7 can solubilize inorganic phosphates (tricalcium phosphate, hydroxyapatite) and organic phosphates (calcium phytate). The aim of the work is to investigate the potential of phosphate-mobilizing ability of two strains, A. radiobacter 10 and P. chlororaphis PG7. The stock cultures were propagated on pea agar (according to Khotyanovich). The phosphate mobilizing ability of the strains was assessed in vitro on selective nutrient media at 28 °С. Dephosphorylation of sodium phytate was examined in two liquid media. Medium II had the following composition (g/l distilled water): (NH4)2SO4 — 1.0, K2SO4 — 0.2, Na phytate (Sigma-Aldrich, USA) — 10, corn extract — 0.2, pH 6.8. PSM (phytase screening medium) composition was as follows (g/l distilled water): D-glucose — 15.0, (NH4)2SO4 — 5.0, KCl — 0.5, MgSO4·7H2O — 0.1, NaCl — 0.1, CaCl2·2H2O — 0.1; FeSO4·7H2O — 0.01, MnSO4·7H2O — 0.01; Na phytate (Sigma-Aldrich, USA) — 5, pH 6.5. The content of total phosphorus added to media with Na phytate was determined by the method of E. Truog and A.H. Meyer modified by J.B. Rodriguez et al. (1994) after ashing as per N.E. Ginsburg and G.M. Shcheglova (1960). The growth of strains in liquid media was estimated by the bacteria abundance (CFU/ml of suspension) during incubation. The ability of the strains to solubilize inorganic phosphates (tricalcium phosphate, hydroxyapatite) and organic phosphate (calcium phytate) was carried out on three solid nutrient media, the NBRIP, glucose-aspartic medium (according to G.S. Muromtsev) and PSM. NBRIP (National Botanical Research Institute's phosphate growth medium) composition was as followed (g/l of distilled water): D-glucose — 10, Ca3(PO4)2 — 5.0, MgCl2·6H2O — 5.0, MgSO4·7H2O — 0.25, KCl — 2.0, (NH4)2SO4 — 0.1, agar-agar — 20, pH 6.8. The glucose-aspartic medium with hydroxyapatite (according to G.S. Muromtsev) (43) contained (g/l of distilled water) D-glucose — 10, asparagine — 1, K2SO4 — 0.2, MgSO4·7H2O — 0.2, corn extract — 0.2, Ca5(PO4)3O5 — 4, agar-agar — 20, pH 6.8. The PSM composition is as hereinabove, added with agar-agar 20 g/l, pH 6.5 adjusted to by adding a 1 0% aqueous solution of Ca(OH)2 to convert soluble sodium phytate into insoluble calcium phytate. The formation of halos around the colonies was recorded. The research revealed that A. radiobacter 10 cultured in the liquid medium uses phytate as a source of carbon and phosphorus for growth and enzymatically dephosphorylates phytate. This was evidenced by a significant increase in abundance of the bacteria during 4-day growth, a relatively small decrease in pH of the liquid broth compared to the control without inoculation, and the accumulation of immobilized phosphorus in the bacterial cell sediment and free orthophosphate in the liquid medium. P. chlororaphis PG7 could not mobilize phytate in the medium II. In particular, despite an increase in the P. chlororaphis PG7 aundance, there was no noticeable accumulation of bacterial cell sediment and free orthophosphate in the liquid medium. It was shown that when cultured in the liquid PSM, both strains actively grew and multiplied, obviously using glucose as a source of carbon and energy. Under these conditions, a significant amount of immobilized phosphorus accumulated in the bacterial cell sediment, while the content of free orthophosphate in the medium remained at the control level. In addition, bacterial growth led to significant acidification of the medium, which contributed to the non-enzymatic hydrolysis of sodium phytate. Therefore, the research data could not drive to an unambiguous conclusion about the ability of strains to enzymatic hydrolysis of sodium phytate when cultured in the liquid PSM with two carbon sources. The halos around the colonies of P. chlororaphis PG7 on solid media indicated its ability to dissolve inorganic phosphates and phytin by solubilization. Unlike the Pseudomonas strain, the A. radiobacter 10 showed no solubilizing ability. This indicates its individual physiological features, since, as follows from special publication, many representatives of the genus Rhizobium are potential solubilizers. Thus, the ability of strains to solubilize mineral phosphates should be tested on solid nutrient media, where the formation of halos around colonies is a criterion for evaluating phosphate dephosphorization. The ability of strains to mobilize phosphorus from phytates should be assessed in liquid media in order to avoid false positive or false negative results. The main indicators of the enzymatic hydrolysis of phytates are the accumulation of immobilized phosphorus in the sediment of bacterial cells and free orthophosphate in the medium.

Keywords: phosphate-mobilizing ability, Agrobacterium radiobacter, Pseudomonas fluorescens, phytate, tricalcium phosphate, hydroxyapatite, selective nutrient media, immobilized phosphorus, orthophosphate.

 

REFERENCES

  1. Polevoi V.V. Fiziologiya rastenii [Plant physiology]. Moscow, 1989 (in Russ.).
  2. Lambers H., Chapin F.S., Pons T.L. Plant Physiological Ecology. Second edition. Springer, New York, 2008.
  3. Marschner H. Mineral nutrition of higher plants. Academic Press, London, 1995 CrossRef
  4. Karandashov V., Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science,2005, 10(1): 22-29 CrossRef
  5. Casieri L., Lahmidi N.A., Doidy J., Veneault-Fourrey C., Migeon A., Bonneau L., Courty P. E., Garcia K., Charbonnier M., Delteil A., Brun A., Zimmermann S., Plassard C., Wipf D. Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza, 2013, 23(8): 597-625 CrossRef
  6. Ganzhara N.F. Pochvovedenie s osnovami geologii [Soil science with the basics of geology]. Moscow, 2013 (in Russ.).
  7. Sheudzhen A.KH. Agrokhimiya. CH. 4. Fundamental'naya agrokhimiya: uchebnoe posobie [Agrochemistry. Part 4. Fundamental agrochemistry: textbook]. Krasnodar, 2016 (in Russ.).
  8. Richardson A.E., Lynch J.P., Ryan P.R., Delhaize E., Smith F.A., Smith S.E., Harvey P.R., Ryan M.H., Veneklaas E.J., Lambers H., Oberson A., Culvenor R.A., Simpson R.J. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349: 121-156 CrossRef
  9. Shaposhnikov A.I., Belimov A.A., Kravchenko L.V., Vivanko D.M. Interaction of rhizosphere bacteria with plants: mechanisms of formation and factors of efficiency in associative symbiosis (review). Sel'skokhozyaistvennaya biologiya, 2011, 3: 16-22 (in Russ.).
  10. Goldstein A.H. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. American Journal of Alternative Agriculture, 1986, 1(2): 51-57 CrossRef
  11. Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R.K., Laxmipathi Gowda C.L., Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 2015, 5: 355-377 CrossRef
  12. Jinturkar B.P. An application of phosphate solubilization by rhizobium strains: a study. Accent Journal of Economics Ecology & Engineering, 2016, 1(5): 1-3.
  13. Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Mycrobiology, 2015, 6(745): 1-9 CrossRef
  14. Liu M., Liu X., Cheng B.-S., Ma X.-L., Lyu X.-T., Zhao X.-F., Ju Y.-L., Min Z., Fang Y.-L. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Spanish Journal of Agricultural Research, 2016, 14(4): e1106 CrossRef
  15. Mohandas S., Poovarasan S., Panneerselvam P., Saritha B., Upreti K.K., Kamal R., Sita T. Guava (Psidium guajava L.) rhizosphere Glomus mosseae spores harbor actinomycetes with growth promoting and antifungal attributes. Scientia Horticulturae, 2013, 150: 371-376 CrossRef
  16. Battini F., Cristani C., Giovannetti M., Agnolucci M. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiological Research, 2016, 183: 68-79 CrossRef
  17. Vozbutskaya A.E. Khimiya pochvy [Soil chemistry]. Moscow, 1968.
  18. Sparvoli F., Cominelli E. Biofortification and phytic acid reduction: a conflict of interest for the plant? Plants, 2015, 4(4): 728-755 CrossRef
  19. Balaban N.P., Suleimanova A.D., Valeeva L.R., Shakirov E.V., Sharipova M.R. Biokhimiya, 2016, 81(8): 1011-1020 (in Russ.).
  20. Oh B.-C., Choi W.-C., Park S.-C., Kim Y.-O., Oh T.-K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 2004, 63: 362-372 CrossRef
  21. Lei X.G., Porres J.M. Phytase: an enzyme to improve soybean nutrition. In: Soybean and nutrition. H.A. El-Shemy (ed.). InTech, Rijeka, Croatia, 2011 CrossRef
  22. Jorquera M., Martinez O., Maruyama F., Marschner P., de la Luz Mora M. Current and future biotechnological applications of bacterial phytases and phytase producing bacteria. Microbes and Environments, 2008, 23(3): 182-191 CrossRef
  23. Mukhametzyanova A.D., Akhmetova A.I., Sharipova M.R. Mikrobiologiya,2012, 81(3): 291-300 (in Russ.).
  24. Hayatsu M. Utilization of phytic acid by cooperative interaction in rhizosphere. Microbes and Environments, 2013, 28(1): 1-2 CrossRef
  25. Lei X.G., Porres J.M., Mullaney E.J., Brinch-Pedersen H. Phytase: source, structure and application. In: Industrial Enzymes. Structure, Function and Applications. J. Polaina, A.P. Maccabe (eds.). Springer, Dordrecht, 2007: 505-529 CrossRef
  26. Jatuwong K., Suwannarach N., Kumla J., Penkhrue W., Kakumyan P., Lumyong S. Bioprocess for production, characteristics and biotechnological applications of fungal phytases. Frontiers in Microbiology, 2020, 11: 188 CrossRef
  27. Quan Ch., Zhang L., Wang Y., Ohta Y. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. Journal of Bioscience and Bioengineering, 2001, 92(2): 154-160 CrossRef
  28. Demirkan E., Baygin E., Usta A. Screening of phytate hydrolysis Bacillus sp. isolated from soil and optimization of the certain nutritional and physical parameters on the production of phytase. Turkish Journal of Biochemistry, 2014, 39(2): 206-214 CrossRef
  29. Onawola O.O., Akande I.S., Okunowo W.O., Osuntoki A.A. Isolation and identification of phytase-producing Bacillus and Enterobacter species from Nigerian soils. Nigeria Journal of Biotechnology, 2019, 36(2): 127-138 CrossRef
  30. Mukhametzyanova A.D., Marenova I.O., Sharipova M.R. Mikrobiologiya, 2013, 82(1): 52-58 (in Russ.).
  31. Hill J.E., Kysela D., Elimelech M. Isolation and assessment of phytate-hydrolysing bacteria from the DelMarVa Peninsula. Environmental Microbiology, 2007, 9(12): 3100-3107 CrossRef
  32. Tereshchenko N.N. Bioudobreniya na osnove mikroorganizmov: uchebnoe posobie [Biofertilizers based on microorganisms: a study guide]. Tomsk, 2003 (in Russ.).
  33. Unno Y., Okubo. K., Wasaki J., Shinano T., Osaki M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environmental Microbiology, 2005, 7(3): 396-404 CrossRef
  34. Balaban N.P., Suleimanova A.D., Valeeva L.R., Chastukhina I.B., Rudakova N.L., Sharipova M.R., Shakirov E.V. Microbial phytases and phytate: exploring opportunities for sustainable phosphorus management in agriculture. American Journal of Molecular Biology, 2017, 7(1): 11-29 CrossRef
  35. Yoshida K., Yamaguchi M., Morinaga T., Kinehara M., Ikeuchi M., Ashida H., Fujita Y. myo-inositol catabolism in Bacillus subtilis. Journal of Biological Chemistry, 2008, 283(16): 10415-10424 CrossRef
  36. Rodrı́guez H., Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17(4-5): 319-339 CrossRef
  37. Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11: 789-799 CrossRef
  38. Pérez-García A., Romero D., de Vicente A. Plant protection and growth stimulation by microorganisms: biotechnological application of Bacilli in agriculture. Current Opinion in Biotechnology, 2011, 22(2): 187-193 CrossRef
  39. Krinke O., Novotná Z., Valentová O., Martinec J. Inositol trisphosphate receptor in higher plants: is it real? Journal of Experimental Botany, 2007, 58(3): 361-376 CrossRef
  40. Johnson T.D. Use of synergistic microorganisms and nutrients to produce signals that facilitate the germination and plant root colonization of mycorrhizal fungi in phosphorus rich environments. United States Patent No.: US 9,017.442 B2. Date of Patent: Apr. 28, 2015.
  41. Pavlova V.F., Muromtsev G.S., Getmanskaya O.I. Shtamm bakterii Agrobacterium radiobacter VNIISKhM-10 dlya polucheniya udobreniya pod ovoshchnye kul'tury. Baza patentov SSSR, patenta: 1756318. Vsesoyuznyi nauchno-issledovatel'skii institut sel'skokhozyaistvennoi mikrobiologii.Zayavka 4665197 23.03.1989. MPK: C05F 11/08, C12N 1/20. Opubl. 23.08.1992 [Bacterial strain Agrobacterium radiobacter VNIISKhM-10 for obtaining fertilizer for vegetable crops. Base of patents of the USSR, patent number: 1756318. All-Union Research Institute of Agricultural Microbiology. Application 4665197 23.03.1989. MPK: C05F 11/08, C12N 1/20. Publ. 23.08.1992] (in Russ.).
  42. Kozhemyakov A.P., Belobrova S.N., Orlova A.G. Creating and analyzing a database on the efficiency of microbial preparations of complex action. Sel'skokhozyaistvennaya biologiya, 2011, 3: 112-115 (in Russ.).
  43. Metodicheskie ukazaniya po vydeleniyu mikroorganizmov, rastvoryayushchikh trudnodostupnye mineral'nye i organicheskie soedineniya fosfora /Pod redaktsiei G.S. Muromtseva [Guidelines for the isolation of microorganisms that dissolve hard-to-reach mineral and organic phosphorus compounds. G.S. Muromtsev (ed.)]. Leningrad, 1981 (in Russ.).
  44. Sasirekha B., Bedashree T., Champa Kl. Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. European Journal of Experimental Biology, 2012, 2(1): 95-104.
  45. Nautiyal C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 1999, 170(1): 265-270 CrossRef
  46. Agrokhimicheskie metody issledovaniya pochv /Pod redaktsiei A.V. Sokolova [Agrochemical methods of soil research. A.V. Sokolova (ed.)]. Moscow, 1975 (in Russ.).
  47. Rodriguez J.B., Self J.R., Soltanpour P.N. Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method. Soil Sciens Society of America Journal,1994, 58(3): 866-870 CrossRef
  48. Ginzburg K.E., Shcheglova G.M. Pochvovedenie, 1960, 5: 100-105 (in Russ.).
  49. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii) [Methods of field trials]. Moscow, 1973 (in Russ.).
  50. Sasirekha, B., Bedashree T., Champa Kl. Statistical optimization of medium components for improved phytase production by Pseudomonas aeruginosa. International Journal of ChemTech Research,2012, 4(3): 891-895.
  51. Bogar B., Szakacs G., Pandey A., Abdulhameed S., Linden J.C., Tengerdy R.P. Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnology Progress, 2003, 19(2): 312-319 CrossRef
  52. Singh N.K., Joshi D.K., Gupta R.K. Isolation of phytase producing bacteria and optimization of phytase production parameters. Jundishapur Journal of Microbiology, 2013, 6(5): 6419 CrossRef
  53. Klykova M.V., Dunajtsev I.A., Zhigletsova S.K., Kondrashenko T.N., Lev I.O., Sosna I. M., Torgonina I.V., Varlamova T.A. Phosphate-dissolving strain Pseudomonas chlororaphis ssp chlororaphis vsk-26a3 with fungicidal and bactericidal activity. Russian Federation Patent No.: RU 2 603 281(13) C1. Date of publication: 27.11.2016. Bull. 33.
  54. Spravochnik khimika 21. Fitinovaya kislota [Chemist's handbook 21. Phytic acid] (in Russ.). Available: https://www.chem21.info/. No date.
  55. Bae H.D., Yanke L.J, Cheng K.-J., Selinger L.B. A novel staining method for detecting phytase activity. Journal of Microbiological Methods, 1999, 39(1): 17-22 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)