PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.1.27eng

UDC: 633.39:581.144.2

Acknowledgements:
Supported financially by the Russian Science Foundation, project No. 19-16-00114

 

THE FEATURES OF ROOT FORMATION OF SOME FODDER SEMI-SHRUB AND SHRUB HALOPHYTES IN THE FOOTHILL DESERT OF UZBEKISTAN

E.Z. Shamsutdinova1 , N.Z. Shamsutdinov2, I.V. Savchenko3,
O.A. Starshinova1, V.I. Agafonov1, Z.Sh. Shamsutdinov1

1All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail amerik.alexander@gmail.com ( corresponding author), levon-agro@mail.ru, valentbond@mail.ru, yumart@yandex.ru;
2Emanuel Institute of Biochemical Physics RAS, 4, ul. Kosygina, Moscow, 119334 Russia

ORCID:
Shamsutdinova E.Z. orcid.org/0000-0002-8519-9041
Starshinova O.A. orcid.org/0000-0001-9725-6165
Shamsutdinov N.Z. orcid.org/0000-0003-1430-7137
Agafonov V.I. orcid.org/0000-0002-2392-5255
Savchenko I.V. orcid.org/0000-0002-3712-7609
Shamsudinov Z.Sh. orcid.org/0000-0002-1377-457X

September 18, 2021

 

Distinguishing feature of halophytes as fodder plants are high nutritional value, stable balance of nutrients over seasons, especially during critical periods of pasturing during autumn and winter, and a high content of essential amino acids. Halophytic fodder dwarf semi-shrubs, Kochia prostrata (L.) Schrad. and Salsola orientalis S.G. Gmel., and shrubs, Haloxylon aphyllum (Minkw.) Iljin and Aellenia subaphylla (С.А. Меу) Aellen. perform high and sustainable fodder productivity under xerothermic conditions of the Central Asian deserts. In these conditions, shrub and semi-shrub halophytes can successfully complete a full life cycle due to structural, physiological and biological adaptations. These re a succulent type of the leaf photosynthetic apparatus (R.M. Ogburn et al., 2010), a multilayer epidermis, thickening of the cuticle (R.F. Sage et al., 2011) and the C4 plants which are more efficient in transpiration compared to C3 plants and lower water consumption (V.I. Pjankov et al., 1991; V.I. Pankov, 1993). Roots play a central role in the yield formation and now considered key drivers of the second "green revolution". Knowledge of the Chenopodiaceae shrubs’ and semi-shrubs’ root formation in the foothill desert conditions elucidates fundamental peculiarities of these halophytic plant biology and provides the correct placement of the crops in arid zones. We compared parameters of root formation in shrubby and semi-shrubby halophyte species to identify their ecological role in the conditions of the Central Asian foothill desert (Nishan steppe, Kashkadarya region, Republic of Uzbekistan, 2015-2020) in plants of the 1st and 5th year of life. The halophytes of Chenopodiaceae family have acquired adaptive properties and increased production functions due to evolutionary developed powerful and deeply penetrating roots capable of the use of precipitation, condensation moisture and shallow ground water. Semi-shrubs Kochia prostrata (L.) Schrad., Salsola orientalis S.G. Gmel. and shrubs Haloxylon aphyllum (Minkw.) Iljin, Aellenia subaphylla (С.А. Меу) Aellen. are capable of rapid root growth and development. The roots of 1-year old plants penetrate into the soil to a depth of 235 cm in H. apyllum, 150 cm in A. subaphylla, 200 cm in S. orientalis, and 215-295 cm in K. prostrata. At the age of 5 years, the roots reached a depth of 1240 cm, 600 cm, 550 cm, and580 cm, respectively. Therefore, the root length exceeds the height of the aerial part in the 1st year by 4-4.5 times, and at the age of 5 years by 6 times. The ability to high growth rates of the root system is an important condition for uninterrupted water absorption by the roots in conditions of moisture deficiency and drought. The depth of penetration of the root system of plants of different life forms (shrubs, semi-shrubs) is strongly influenced by the water-physical properties of the edaphic environment. In conditions of permanent soil moisture deficiency, the root system tends to constantly go deeper into the soil-soil environment, breaking through dense, cemented soil layers. In our opinion, for semi-shrubby, shrubby halophytes can not only uptake water by roots from deep soil but also move it to drier soils horizons where this water can be used by plants with a shallow root system. Therefore, the studied halophytes can obviously provide a function of hydraulic lift.

Keywords: fodder halophytes, shrubs, semi-shrubs, Salsola orientalis S.G. Gmel., Kochia prostrata (L.) Schrad., Aellenia subaphylla (С.А. Меу) Aellen, Haloxylon aphyllum (Minkw.) Iljin, root system, morphology, hydraulic lift.

 

REFERENCES

  1. Nechaeva N.T., Nikolaev V.N. Khimicheskii sostav, pitatel'nost' i biologicheskaya polnotsennost' pastbishchnykh kormov podgornoi ravniny Turkmenistana [Chemical composition, nutritional value and biological usefulness of pasture forage in the piedmont plain of Turkmenistan]. Ashkhabad, 1985 (in Russ.).
  2. Barret-Lennard E.G., Malcolm C.V. Saltland Pastures in Australia: a practical guide. Bulletin 4312. Dept. ofAgriculture. WesternAustralia. SouthPerth, 1995.
  3. Nechaeva N.T., Vasilevskaya V.K., Antonova K.G. Zhiznennye Formy Rastenii pustyni Karakumy [Life forms of plants of the Karakum desert]. Moscow, 1973 (in Russ.).
  4. Shamsutdinov Z.Sh., Shamsutdinov N.Z. Galofitnoe rastenievodstvo (ekologo-biologicheskie osnovy) [Halophytic crop production (ecological and biological bases)]. Moscow, 2005 (in Russ.).
  5. Korovin E.P. Rastitel'nost' Srednei Azii i Kazakhstana [Vegetation of Central Asia and Kazakhstan]. Tashkent, 1961 (in Russ.).
  6. Akzhigitova N.I. Galofil'naya rastitel'nost' Srednei Azii i ee indikatsionnye svoistva [Halophilic vegetation of Central Asia and its indicative properties]. Tashkent, 1982 (in Russ.).
  7. Shamsutdinov N.Z., Shamsutdinova E.Z., Orlovsky N.S., Shamsutdinov Z.Sh. Halophytes: ecological features, global resources, and outlook for multipurpose use. Herald of the Russian Academy of Sciences, 2017, 87: 1-11 CrossRef
  8. Bazzaz F.A., Ackerly D.D., Reekie E.G. Reproductive allocation in plants. In: Seeds: the ecology of regeneration in plant communities. M. Fenner (ed.). CAB International, Oxford, 2000.
  9. Waines J.G., Ehdaie B. Domestication and crop physiology: roots of green-revolution wheat. Annals of Botany, 2007, 100(5): 991-998 CrossRef
  10. Gewin V. Food: an underground revolution. Nature, 2010, 466: 552-553 CrossRef
  11. Geldner N., Salt D.E. Focus on roots. Plant Physiol., 2014, 166(2): 453-454 CrossRef
  12. Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot., 2013, 112(7): 1209-1221 CrossRef
  13. Liu L., Wang B. Protection of halophytes and their uses for cultivation of saline-alkali soil in China. Biology (Basel), 2021, 10(5): 353 CrossRef
  14. Alishahi F., Alikhani H.A., Khoshkholgh-Sima N.A., Etesami H. Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth. Int. Microbiol., 2020, 23(3): 415-427 CrossRef
  15. Nikalje G.C., Nikam T.D., Suprasanna P. Looking at halophytic adaptation to high salinity through genomics landscape. Curr. Genomics, 2017, 18(6): 542-552 CrossRef
  16. Flowers T.J., Muscolo A. Introduction to the Special Issue: halophytes in a changing world. AoB Plants, 2015, 7: plv020 CrossRef
  17. Sudnitsyn I.I. Dvizhenie pochvennoi vlagi i vodopotreblenie rastenii [Movement of soil moisture and water consumption of plants]. Moscow, 1979 (in Russ.).
  18. Shalyt M.S. V knige: Polevaya geobotanika /Pod redaktsiei E.M. Lavrenko, A.A. Korchagina [Field geobotany. E.M. Lavrenko, A.A. Korchagin (eds.)]. Moscow-Leningrad, 1960, vol. 2: 369-447 (in Russ.).
  19. Botanicheskaya geografiya Kazakhstana i Srednei Azii (v predelakh pustynnoi oblasti) /Pod redaktsiei E.I. Rachkovskoi, E.A. Volkovoi, V.N. Khramtsova [Botanical geography of Kazakhstan and Central Asia (within the desert region). E.I. Rachkovskaya, E.A. Volkova, V.N. Khramtsov (eds.)]. St. Petersburg, 2003 (in Russ.).
  20. Ogburn R.M., Edwards E.J. The ecological water-use strategies of succulent plants. Advances in Botanical Research, 2010, 55: 179-225 CrossRef
  21. Sage R.F., Christin P.A., Edwards E.J. The C4 plant lineages of planet earth. Journal of Experimental Botany, 2011, 62(9): 3155-3169 CrossRef
  22. P'yankov V.I., Mokronosov A.T. Problemy osvoeniya pustyn', 1991, 3-4: 161-170 (in Russ.).
  23. P'yankov V.I. Rol' fotosinteticheskoi funktsii v adaptatsii rastenii k usloviyam sredy. Avtoreferat doktorskoi dissertatsii [The role of photosynthetic function in plant adaptation to environmental conditions. DSc Thesis]. Moscow, 1993 (in Russ.).
  24. Rotmistrov V.G. Zhurnal opytnoi agronomii, 1907, V(VIII): 499-522 (in Russ.).
  25. Waldron B.L., Greenhalgh L.K., ZoBell D.R., Olson K.C., Davenport B.W., Palmer M.D. Forage Kochia (Kochia prostrata) increases nutritional value, carrying capacity, and livestock performance on semiarid rangelands. Forage &Grazinglands, 2011, 9: 1-6 CrossRef
  26. Erin C.G., Patricia S.M. Does Kochia prostrata spread from seeded sites? An evaluation from Southwestern Idaho, USA. Rangeland Ecol. Manage, 2013, 66: 191-203 CrossRef
  27. Wang X., Wu J., Yang Z., Zhang F., Sun H., Qiu X., Yi F., Yang D., Shi F. Physiological responses and transcriptome analysis of the Kochia prostrata (L.) Schrad. to seedling drought stress. AIMS Genet., 2019, 6(2): 17-35 CrossRef
  28. Ramenskii L.G. Izbrannye raboty. Problemy i metody izucheniya rastitel'nogo pokrova [Selected works. Problems and methods of studying the vegetation cover]. Leningrad, 1971 (in Russ.).
  29. Grime J.P. Plants strategies and vegetation processes. John Wiley and Sons Ltd., Chichester, 1979.
  30. Grigor'ev Yu.S. Problemy osvoeniya pustyn', 1968, 5: 3-13 (in Russ.).
  31. Breckle S.W. How do halophytes overcome salinity? In: Biology of salt tolerant plants. M.A. Khan, I.A. Ungar (eds.). Karachi, 1995.
  32. Kudoyarova G.R., Kholodova V.P., Veselov D.S. Fiziologiya rastenii, 2013, 60(2): 155-165 (in Russ.).
  33. Skobeleva O.V., Ktitorova I.N., Agal'tsova K.G. Fiziologiya rastenii, 2010, 57: 520-529 (in Russ.).
  34. Ivanov V.B. Kletochnye mekhanizmy rosta rastenii [Cellular mechanisms of plant growth]. Moscow, 2011 (in Russ.).
  35. Bengough A.G., McKenzie B.M., Hallett P.D., Valentine T.A. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 2011, 62(1): 59-68 CrossRef
  36. Wiegers B.S., Cheer A.Y., Silk W.K. Modeling the hydraulics of root growth in three dimensions with phloem water sources. Plant Physiology, 2009, 150: 2092-2103 CrossRef
  37. Onipchenko V.G. Funktsional'naya fitotsenologiya: sinekologiya rastenii [Functional phytocenology: synecology of plants]. Moscow, 2013 (in Russ.).
  38. Mirkin B.M., Naumova L.G. Vvedenie v sovremennuyu nauku o rastitel'nosti [Introduction to modern vegetation science]. Moscow, 2017 (in Russ.).
  39. Emerman S.H., Dawson T.E. Hydraulic lift and its influence on the water content of the rhizosphere: an example from sugar maple, Acer saccharum. Oecologia, 1996, 108(2): 273-278 CrossRef
  40. Ludwig F., Dawson T.E., Kroon H., Berendse F., Prins H.H. Hydraulic lift in Acacia tortilistrees on an east African savanna. Oecologia, 2003, 134(3): 293-300 CrossRef
  41. Ryel R.J. Hydraulic redistribution. In: Progress in botany. 65. K. Esser, U. Lüttge, W. Beyschlag, J. Murata (eds.). Springer, Berlin, Heidelberg, 2004.
  42. Liste H.H., White J.C. Plant hydraulic lift of soil water — implications for crop production and land restoration. Plant and Soil, 2008, 313(1-2): 1-17 CrossRef
  43. Caldwell M., Dawson T., Richards J. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 1998, 113: 151-161 CrossRef
  44. Prieto I., Armas C., Pugnaire F.I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytologist, 2012, 193: 830-841 CrossRef
  45. Asish K.P., Anath B.D. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60: 324-349 (doi:10.1016/j.ecoenv.2004.06.010">CrossRef
  46. Berendsen R.L., Pieterse C.M., Bakker P.A. The rhizosphere microbiome and plant health. Trends Plant Sci., 2012, 17(8): 478-486 CrossRef
  47. Sharma S., Kulkarni J., Jha B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front. Microbiol., 2016, 7: 1600 CrossRef
  48. Nabti E., Sahnoune M., Ghoul M., Fischer D., Hofmann A., Rothballer M., Schmid M., Hartman A. Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J. Plant Growth Regul., 2010, 29: 6-22 CrossRef
  49. Nabti E., Schmid M., Hartmann A. Application of halotolerant bacteria to restore plant growth under salt stress. In: Halophiles. Sustainable development and biodiversity, vol. 6. D. Maheshwari, M. Saraf (eds.). Springer, Cham, 2015: 235-259 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)