PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.1.81eng

UDC: 633.111.1:631.52

 

A NOVEL INTEGRATIVE APPROACH TO STUDY THE DYNAMICS OF AN INCREASE IN COMMON SPRING WHEAT ADAPTIVITY AND HOMEOSTATICITY (on the example of breeding programs in the Northern Trans-Ural)

V.V. Novokhatin1, T.V. Shelomentseva1, V.A. Dragavtsev2

1Federal Research Center of the Tyumen Scientific CenterSB RAS, 86, ul. Malygina, PO Box 1230, Tyumen, 625000 Russia, e-mail sciensec@ikz.ru;
2Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail dravial@mail.ru (  corresponding author)

ORCID:
Novokhatin V.V. orcid.ogr/0000-0002-2191-0420
Dragavtsev V.A. orcid.ogr/0000-0002-0934-020Х
Shelomentseva T.V. orcid.ogr/0000-0003-4855-6182

September 22, 2021

 

Though there are a number of evolutionary theories of living nature, no approach is available to quantify changes occurring during long-term breeding programs. By N.I. Vavilov, selection is evolution directed by the man’s will. Here, we suggest and used a novel method for studying shifts in statistical genetic parameters which have occurred in sets of varieties of soft spring wheat (Triticum aestivum L.) over an approximately 80-year period. During 8 years (in 2005-2012), 23 varieties of soft spring wheat zoned in the period from the 1930s were investigated in the conditions of the northern forest-steppe of Western Siberia (experimental field of the Research Institute of Agriculture of the Northern Trans-Urals, Tyumen, 57°09'N, 65°32'E). All of them were successfully cultivated in the Northern Trans-Urals in various years. The effects of genotype by environment interaction changing the crop ranks by year of testing were measured. The average yield of the varieties zoned in the 1940s was 20.2 с/ha (a reference point). These varieties showed a pronounced plasticity and homeostaticity of grain production. The regression lines for yields vs. ecological years (from bad to favorable conditions) were flat with a 31°-39° inclination. Milturum 321, the first zoned variety for the region is stable for grain yields (S2di = 3.5). During 1950-1970s, Saratov varieties and the late-maturing variety of Siberian selection Milturum 553 have been zoned in the Northern Trans-Urals. The average yield of the group is 23.4 с/ha. The regression lines were above the lines of the first group and had similar inclination. Saratov varieties showed yield homeostaticity similarly to the varieties of the first group but lodging at yields above 20-25 с/ha. In 1970-1990s, the varieties resistant to lodging became widespread. Their yields in testing averaged 29.1 с/ha (+44 % to the reference point), the regression lines inclination reached 39°-47° indicating a decrease in yield homeostaticity. These varieties more strongly responded to a better or adverse environments compared to the varieties of the first and second groups. Strela and Tyumenskaja 80 varieties of local selection are quite stable in terms of yields (S2di = 4.8-6.1). Currently used medium-ripe intensive varieties capable of producing grain yields of 34.3 с/ha on average (+70.0 % to the reference point) strongly responded to changes in environments, which followed from the inclination of the regression lines (50°-54°, bi = 1.21-1.40). Plasticity and crop homeostaticity are characteristic of the Chernyava 13 variety showing a flat regression line (29°, bi = 0.56). The most stable crop performance was characteristic of the varieties Lutescens 70 and Icar (S2di = 8.7 and S2di = 8.6, respectively). Modern zoned early-ripening varieties are less productive than the varieties of the previous group (x = 31.1 с/ha), with flat regression lines (37°-38°). The Tulunskaya 12 and Novosibirskaya 15 varieties are unstable in terms of yields (S2di = 26.6 and S2di = 29.0, respectively). The Novosibirskaya 29 variety is more productive (33.3 с/ha) and similar to the medium-ripe varieties from the previous group in terms of plasticity and stability. The assessment of a genotype response to environments affecting crop plasticity and stability (and homeostaticity) evaluates different characteristics of crop adaptability. So this allows us to investigate varieties under changing environments, to assess the effectiveness of their use in the Northern Trans-Urals environment, and to optimize breeding programs. High-yielding varieties with a well-pronounced adaptability should be involved in breeding.

Keywords: variety, yield, genotype by environment interaction, limiting factors, plasticity, homeoctaticity, stability, statistical genetic parameters.  

 

REFERENCES

  1. Vavilov N.I. Nauchnye osnovy selektsii pshenitsy [Scientific basis of wheat breeding]. Moscow-Leningrad, 1935 (in Russ.).
  2. Burkhardt R.W. Jr. Lamarck, evolution, and the inheritance of acquired characters Genetics, 2013, 194(4): 793-805 CrossRef
  3. Partridge D. Darwin’s two theories, 1844 and 1859. J. Hist. Biol., 2018, 51(3): 563-592 CrossRef
  4. Frías L.D. Omissions in the synthetic theory of evolution. Biol. Res., 2010, 43(3): 299-306 CrossRef
  5. Portera M., Mandrioli M. Who’s afraid of epigenetics? Habits, instincts, and Charles Darwin's evolutionary theory. Hist. Philos. Life Sci., 2021, 43(1): 20.CrossRef
  6. Clarke D., Hess T.M., Haro-Monteagudo D., Semenov M.A., Knox J.W. Assessing future drought risks and wheat yield losses in England. Agricultural and Forest Meteorology, 2021, 297: 108248 CrossRef
  7. Kodan A.S., Yadav A., Kumar V., Mehra S. Determinants of wheat productivity, with special reference to Haryana. IUP Journal of Agricultural Economics, 2012, 0(1): 20-31.
  8. Tollenaar M. Impact of stress tolerance on yield improvement and stability: physiological investigation from the field to gene level. Field Crops Res., 2002, 75(2/3): 95-246 CrossRef
  9. Zhuchenko A.A. Adaptivnyi potentsial kul'turnykh rastenii (ekologicheskie osnovy) [Adaptive potential of cultivated plants (ecological foundations)]. Kishinev, 1988 (in Russ.).
  10. Mądry W., Iwańska M. Measures of genotype wide adaptation level and their relationships in winter wheat. Cereal Research Communications, 2012, 40: 592-601 CrossRef
  11. Zamfir M.C, Zamfir I. Studiul comportarii unor soiuri de grau in conditiile pedoclimatice din campia Burnasului. Univ. de Stiinte Agronomice si Medicina Veterinara. Ser. A: Agronomie, 2004, 45: 82-90.
  12. Sivapalan S., O’Brien L., Ortiz-Ferrara G., Hollamby G.J., Barclay I., Martin P.J. Yield performance and adaptation of some Australian and CIMMYT/ICARDA developed wheat genotypes in the West Asia North Africa (WANA) region. Australian Journal of Agricultural Research, 2001, 52(6) 661-670 CrossRef
  13. Madry W., Paderewski J., Rozbicki J., Gozdowski D., Golba J., Piechocinski M., Studnicki M., Derejko A. Yielding of winter wheat cultivars across environments — one-year multi-environment post-registration trial. Biuletyn instytutu hodowli i aklimatyzacji roślin, 2012, 263: 189-204.
  14. Zhuchenko A.A. Ekologicheskaya genetika kul'turnykh rastenii (adaptatsiya, rekombinogenez, agrobiotsenoz) [Ecological genetics of cultivated plants (adaptation, recombination, agrobiocenosis)]. Kishinev, 1980 (in Russ.).
  15. Raza A., Razzaq A., Mehmood S.S., Zou X., Zhang X., Lv Y., Xu J.  Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants (Basel), 2019, 8(2): 34 CrossRef
  16. Gao H., Jin M., Zheng X.M., Chen J., Yuan D., Xin Y., Wang M., Huang D., Zhang Z., Zhou K., Sheng P., Ma J., Ma W., Deng H., Jiang L., Liu S., Wang H., Wu C., Yuan L., Wan J. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. USA, 2014, 111(46): 16337-16342 CrossRef
  17. Mohammadi R., Haghparast R., Sadeghzadeh B., Ahmadi H., Solimani K., Amri A. Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Science, 2014, 54: 944-954 CrossRef
  18. Dragavtsev V.A. Mat. III Mizhn. Konf. «Rozvitok nauki u vik informatsiinikh tekhnologii». Kiev, 2017, ch. I: 36-49.
  19. Demelash T., Amou M., Gyilbag A., Tesfay G., Xu Y. Adaptation potential of current wheat cultivars and planting dates under the changing climate in Ethiopia. Agronomy, 2022, 12: 37 CrossRef
  20. Yakushev V.P., Mikhailenko I.M., Dragavtsev V.A. Reserves of agro-technologies and breeding for cereal yield increasing in the Russian Federation. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(5): 550-560 CrossRef
  21. Surin N.A., Lyakhova N.E., Gerasimov S.A., Lipshin A.G. Dostizheniya nauki i tekhniki APK, 2017, 31(5): 28-31 (in Russ.).
  22. Eberhart S.A., Russel W.A. Stability parameters for comparing varieties. Crop Sci., 1966, 6(1): 36-40 CrossRef
  23. Liu H., Able A.J., Able J.A. Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Sci. Rep., 2019, 9(1):14986 CrossRef
  24. Sun Q.M., Zhou R.H., Gao L.F., Zhao G.Y., Jia J.Z. The characterization and geographical distribution of the genes responsible for vernalization requirement in Chinese bread wheat. J. Integr. Plant Biol., 2009, 51(4): 423-432.
  25. Ayalew H., Sorrells M.E., Carver B.F., Baenziger P.S., Ma X.-F. Selection signatures across seven decades of hard winter wheat breeding in the Great Plains of the United States. Plant Genome, 2020, 13: e20032 CrossRef
  26. Zhuchenko A.A., Korol' A.V. Rekombinatsiya v evolyutsii i selektsii [Recombination in evolution and selection]. Moscow, 1985 (in Russ.).
  27. Haberle J., Holzapfel J., Hartl L. Die Genetik der Fusariumresistenz in europaischem Winterweizen. In: Abwehrstrategien gegen biotische Schaderreger, Zuchtung von Hackfruchten und Sonderkulturen. Irdning, 2009: 5-8.
  28. Kosova K., Chrpova J., Sip V. Cereal resistance to Fusarium head blight and possibili­ ties of its improvement through breeding. Czech J. Genet. Plant Breed., 2009, 45(3): 87-105 CrossRef
  29. Gubatov T., Raykov G., Chamurliyski P. New approaches for evaluation the grain yield of winter wheat in contrasting environments. International Journal of Current Research, 2017, 9: 44487-44495.
  30. Spanic V., Cosic J., Zdunic Z., Drezner G. Characterization of agronomical and quality traits of winter wheat (Triticum aestivum L.) for fusarium head blight pressure in different environments. Agronomy,2021, 11: 213 CrossRef
  31. El-Hendawu S., Ruan Y., Hu Y., Sshmidhalteg U. A comparison or screening criteria for salt tolerance in wheat under field and controlled environmental conditions. Journal of Agronomy & Crop Science, 2009, 195(5): 356-367 CrossRef
  32. Guo R., Wu Q., Liu Y. Single-plant similarity-difference selection in wheat breeding. Advance Journal of Food Science and Technology, 2013, 5(11): 1413-1417 CrossRef
  33. Mohammadi R., Armion M., Kahrizi D., Amri A. Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. International Journal of Plant Production, 2010, 4(1): 11-24 CrossRef
  34. Novokhatin V.V., Dragavtsev V.A., Leonova T.A., Shelomentseva T.V. Creation of a spring soft wheat variety Grenada with the use of innovative breeding technologies based on the original theory of eco-genetic arrangement of quantitative traits. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 905-919 CrossRef
  35. Krupin P.YU., Divashuk M.G., Karlov G.I. Gene resources of perennial wild cereals involved in breeding to improve wheat crop (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(3): 409-425 CrossRef
  36. Strazdiņa V., Fetere V. Modifications of winter wheat grain yield and quality under different meteorological conditions. Zinātniski praktiskā konference “Līdzsvarota lauksaimniecība 2019”. Jelgava, Latvija, 2019: 67-71.
  37. Mohammadi M., Ghojigh H., Khanzadeh H., Hosseinpour T., Armion M. Assessment of yield stability of spring bread wheat genotypes in multi-environment trials under rainfed conditions of Iran using the AMMI model. Crop Breeding Journal, 2016, 6(2): 59-66 CrossRef
  38. Zykin V.A., SHamanin V.P., Belan I.A. Ekologiya pshenitsy [Ecology of wheat]. Omsk, 2000 (in Russ.).
  39. Pepó P., Györ, Z. A study of the yield stability of winter wheat varieties. Cereal Research Communications, 2005, 33(4): 769-776.
  40. Golovochenko A.P. Osobennosti adaptivnoi selektsii yarovoi myagkoi pshenitsy v lesostepnoi zone Srednego Povolzh'ya [Features of adaptive breeding of spring soft wheat in the forest-steppe zone of the Middle Volga region]. Kinel', 2001 (in Russ.).
  41. Hassan M.S., Mohamed G.I.A., El-Said R.A.R. Stability analysis for grain yield and its components of some durum wheat genotypes (Triticum durum L.) under different environments. Asian Journal of Crop Science, 2013, 5: 179-189 CrossRef
  42. Madry W., Gozdowski D. A history of the development of statistical methods for designing and analyzing agricultural experiments in the world and in Poland. Biuletyn instytutu hodowli i aklimatyzacji roślin, 2020, 288: 23-40.
  43. Mohammadi R., Roostaei M., Ansari Y., Aghaee M., Amri A. Relationships of phenotypic stability measures for genotypes of three cereal crops. Canadian Journal of Plant Science‎, 2010, 90: 819-830 CrossRef
  44. Bornhofen E., Benin G., Storck L., Guilherme L., Thiago W., Matheus D., Stoco G., Marchioro S.V. Statistical methods to study adaptability and stability of wheat genotypes. Bragantia, 2017, 76(1): 1-10 CrossRef
  45. Dehghani H., Ebadi A., Yousefi A. Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron. J., 2006, 98(2): 388-393 CrossRef
  46. Dragavtsev V.A., Makarova G.A., Kochetov A.A., Mirskaya G.V., Sinyavina N.G. Vavilovskii zhurnal genetiki i selektsii, 2012, 16(2): 427-436 (in Russ.).
  47. Uhr Z., Rachovska G., Delchev G. Evaluation of Bulgarian winter common wheat varieties of yield stability in South Bulgaria. Journal of Agricultural Science and Technology, 2014, 6: 152-156.
  48. Khangil'din V.V., Litvinenko N.A. Nauch.-tekh. byul. VSGI (Odessa), 1981, 1: 8-14 (in Russ.).
  49. Yusufov A.G. Gomeostaz i ego znachenie v ontogeneze rastenii. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1983, 1: 25-34 (in Russ.).
  50. Dragavtsev V.A. Biosfera, 2012, 4(3): 251-262 (in Russ.).
  51. Brancourt-Hulmel M. Selection varietale et milieu. Sélection pour l'adaptation au milieu et prise en compte des interactions génotype/milieu. Oilseeds and Fats, Crops and Lipids, 2000, 7(6): 504-511 CrossRef
  52. Yan W., Hunt L.A. Interpretation of genotype½environment interaction for winter wheat yield in Ontario. Crop Science, 2001, 41(l): 19-25 CrossRef
  53. Eltaher S., Baenziger P.S., Belamkar V., Emara H.A., Nower A.A., Salem K.F.M., Alqudah A.M., Sallam A. GWAS revealed effect of genotype ½ environment interactions for grain yield of Nebraska winter wheat. BMC Genomics, 2021, 22: 2 CrossRef
  54. Nehe A., Akin B., Sanal T., Evlice A.K., Ünsal R., Dinçer N., Demir L., Geren H., Sevim I., Orhan S., Yaktubay S., Ezici A., Guzman C., Morgounov A. Genotype ½ environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE, 2019, 14(7): e0219432 CrossRef
  55. Novokhatin V.V. Mat. nauch. chtenii «100-letie zakladki pervykh polevykh opytov I.I. Zhilinskim» [Proc. of scientific readings «The 100th anniversary of the laying of the first field experiments by I.I. Zhilinsky»]. Novosibirsk, 1997: 126-128 (in Russ.).
  56. Rybas' I.A. Breeding grain crops to increase adaptability (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(5): 617-626 CrossRef 
  57. Stasyuk A.I., Leonova I.N., Ponomareva M.L., Vasilova N.Z., SHamanin V.P., Salina E.A. Phenotypic variability of common wheat (Triticum aestivum L.) breeding lines on yield components under environmental conditions of Western Siberia and Tatarsta.. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(1): 78-91 CrossRef
  58. Kendal E. Comparing durum wheat cultivars by genotype ½ yield ½ trait and genotype ½ trait biplot method. Chilean Journal of Agricultural Research, 2019, 79(4): 512-522 CrossRef
  59. Dragavtsev V.A., Tsil'ke R.A., Reiter B.G., Vorob'ev V.A., Dubrovskaya A.G., Korabeinikov N.I., Novokhatin V.V., Maksimenko V.P., Babakishiev A.G., Ilyushchenko V.G., Kalashnik N.A., Zuikov Yu.P., Fedotov A.M. Genetika priznakov produktivnosti yarovykh pshenits v Zapadnoi Sibiri [Genetics of signs of productivity of spring wheat in Western Siberia]. Novosibirsk, 1984 (in Russ.).
  60. Dragavtsev V.A., Dragavtseva I.A., Efimova I.L., Morinets A.S., Savin I.Yu. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2016, 2(59): 105-121 (in Russ.).
  61. Dragavtsev V.A., Yakushev V.P. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2015, 3(54): 130-137 (in Russ.).
  62. Novokhatin V.V., Shelomentseva T.V. Vestnik Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2014, 4: 14-17 (in Russ.).
  63. Tsonev S., Christov N.K., Mihova G., Dimitrova A., Todorovska E.G. Genetic diversity and population structure of bread wheat varieties grown in Bulgaria based on microsatellite and phenotypic analyses. Biotechnology & Biotechnological Equipment, 2021, 35(1): 1520-1533 CrossRef
  64. Zhuchenko A.A. Adaptivnoe rastenievodstvo (ekologo-geneticheskie osnovy) [Adaptive crop production (ecological and genetic foundations)]. Kishinev, 1990 (in Russ.).
  65. Podlaski S. Wpływ postępu hodowlanego na produkcję roślinną. Postępy nauk rolniczych, 2007, 59(1): 3-22.
  66. Yadav R., Gupta S., Gaikwad K.B., Bainsla N.K., Kumar M., Babu P., Ansari R., Dhar N., Dharmateja P., Prasad R. Genetic gain in yield and associated changes in agronomic traits in wheat cultivars developed between 1900 and 2016 for irrigated ecosystems of Northwestern Plain Zone of India. Front. Plant Sci., 2021, 12: 719394 CrossRef
  67. Yang Z., He Z., Xin-Min C., De-Sen W., Yong Z., Gai-Sheng Z. Genetic gain of wheat breeding for yield in Northern winter wheat zone over 30 years. Acta Agronomica Sinica, 2007, 33(9): 1530-1535.
  68. Woyann L., Zdziarski A., Zanella R., Rosa A., Castro R., Caierão, E., Toigo M., Storck L., Wu J., Benin G. Genetic gain over 30 years of spring wheat breeding in Brazil. Crop Science, 2019, 59: 1-10 CrossRef
  69. Patanè C., Tahir I.S.A., Elbashier E.M.E., Ibrahim M.A.S., Saad A.S.I., Abdalla O.S. Genetic gain in wheat grain yield and nitrogen use efficiency at different nitrogen levels in an irrigated hot environment. International Journal of Agronomy, 2020, 2020: Article ID 9024671 CrossRef
  70. Clarke J.M., Clarke F.R., Pozniak C.J. Forty-six years of genetic improvement in Canadian durum wheat cultivars. Canadian Journal of Plant Science,2010, 90(6): 791-801 CrossRef
  71. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1983 (in Russ.).
  72. Novokhatin V.V. V sbornike: Optimizatsiya selektsionnogo protsessa — faktor stabilizatsii i rosta produktsii rastenievodstva Sibiri OSP-2019 [In: Optimization of the breeding process - a factor of stabilization and growth of Siberian crop production OSP-2019]. Krasnoyarsk, 2019: 92-102 (in Russ.).
  73. Urazaliev R.A. Genotip—sreda [Genotype½environment]. Almalybak, 1985 (in Russ.).
  74. Khangil'din V.G. V sbornike: Fiziologicheskie i biokhimicheskie aspekty geterozisa i gomeostaza rastenii [In: Physiological and biochemical aspects of plant heterosis and homeostasis]. Ufa, 1976: 210-230 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)