PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.1.3eng

UDC: 633.91:581

Acknowledgements:
The work was carried out according to state order No. 0574-2019-0002

 

Parthenium argentatum A. Gray, Taraxacum kok-saghyz L.E. Rodin, AND Scorzonera tau-saghyz Lipsch. et Bosse AS ALTERNATIVE SOURCES OF NATURAL RUBBER: DO WE REALLY NEED THEM? (review)

A.Yu. Amerik1  , L.Yu. Martirosyan1, 2, V.V. Martirosyan1, Yu.Ts. Martirosyan1, 2

1All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail amerik.alexander@gmail.com ( corresponding author), levon-agro@mail.ru, valentbond@mail.ru, yumart@yandex.ru;
2Emanuel Institute of Biochemical Physics RAS, 4, ul. Kosygina, Moscow, 119334 Russia

ORCID:
Amerik A.Yu. orcid.org/0000-0003-1437-2692
Martirosyan V.V. orcid.org/0000-0003-1178-8887
Martirosyan L.Yu. orcid.org/0000-0003-1769-6377
Martirosyan Yu.Ts. orcid.org/0000-0001-8825-2381

December 1, 2021

 

Natural rubber (NR) is a strategic raw material essential to the manufacture of 50,000 different rubber and latex products. In most cases, e.g., in automobile and aviation industries, it cannot be replaced by synthetic rubber alternatives. There are several important reasons why should we care about alternative sources of NR. Among them are a strong allergic reaction to products made from Hevea latex and a danger of spread of South American late blight (South American Leaf Blight, SALB) in Southeast Asia. The latter would cause irreparable damage to the production of natural polymer. At present, the only commercially significant source of NC is Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. — an evergreen tree growing in tropical regions. It is not surprising that the research aimed at finding and creating alternative sources of NR by genetic engineering is intensively developing in Europe and North America. On this issue, there are numerous reviews of leading researchers in this field, in particular, the Dr. K. Cornish’s team. Thus, back in 2000, one of the first detailed reviews devoted to the problem of alternative NC sources was published (H. Mooibroek et al., 2000). A year later, NR biosynthesis in evolutionarily distant rubber plants was described in detail (K. Cornish, 2001). This problem has been further developed in later works of this researcher (K. Cornish, 2017). Detailed reviews of alternative rubber producers have also been published by other leading groups in the field (J. van Beilen et al., 2007; S.C. Gronover et al., 2011; D.T. Ray et al., 2005). We have recently published two review articles describing in detail the biochemical and molecular genetic aspects of NR biosynthesis (A.Y. Amerik et al., 2018; A.Y. Amerik et al., 2021). In this review, we pay special attention to the historical aspects of this problem, which, in our opinion, have not received sufficient consideration in the literature, describe the state of the industry at the present time, and characterize three rubber plants that are promising producers of NR. As alternative sources of NR, two plants are receiving increased attention. These are Mexican guayule shrub (Parthenium argentatum A. Gray) and kok-saghyz or Russian dandelion (Taraxacum kok-saghyz L.E. Rodin). We certainly should also mention the undeservedly forgotten, but very promising alternative producer of NR tau-saghyz (Scorzonera tau-saghyz Lipsch. et Bosse), which, in our opinion, is currently not given enough attention. T. kok-saghys is the most promising alternative rubber plant. For biochemical and molecular genetic studies of the plant, modern molecular biological approaches were used, such as improved transformation protocols, RNA interference (silencing) approaches, and analysis of EST libraries to identify new genes. As a result, the key proteins responsible for NR biosynthesis, cis-prenyltransferase 1-3 (CPT1-3) (T. Schmidt et al., 2010) and CPT activator (RTA) (J. Epping et al., 2015), were identified. It should be noted that the intracellular concentration of CPT regulates NR biosynthesis in cells of Taraxacum brevicorniculatum, the closest relative of T. kok-saghyz. Transgenic lines in which expression of all three CPT genes was suppressed by RNA interference (RNAi) demonstrated almost complete suppression of NR biosynthesis (J. Post et al., 2012). However, more research is needed before T. kok-saghyz NR becomes a commercial alternative to H. brasiliensis NR. Research on P. argentatum is also rapidly developing. In particular, the work carried out in the laboratory of D.K. Ro should be noted. Researchers have identified and characterized a protein complex that includes CPTs and plays a key role in NR biosynthesis (A.M. Lakusta et al., 2019). Unfortunately, research on tau-saghyz (S. tau-saghyz) is not so successful. This species was critically undermined during intensive harvesting in the 1940s. Nevertheless, work on the restoration of this unique species, the concentration of NR in roots of which under favorable conditions reaches 40 % (dry weight), is currently being carried out at the Kazakhstan National University (S.K. Turasheva et al., 2016). Thus, there is a need for alternative rubber crops and technologies for processing raw materials into final products. Thermostable derivatives, e.g., epoxidized rubber from alternative crops can enter the market to significantly reduce the carbon footprint.

Keywords: natural rubber, Hevea brasiliensis, South American Leaf Blight, SALB, latex, allergy, Parthenium argentatum, Taraxacum kok-saghyz, Scorzonera tau-saghyz.  

 

REFERENCES

  1. Eng A.H., Ong E.L.Hevea natural rubber. In: Plastics engineering handbook of elastomers. V. 61. A.K. Bhowmick, H.L. Stephens (eds.). Marcel Dekker, NY, 2000: 29-59.
  2. McIntyre D., Stephens H.L., Schloman W.W. Jr., Bhowmick A.K., Guayule rubber. In: Plastics engineering: handbook of elastomers. V. 61. A.K. Bhowmick, H.L. Stephens (eds.). Marcel Dekker, NY, 2000: 1-27.
  3. Puskas J.E. Producers and world market of synthetic rubbers. In: Biopolymers, Polyisoprenoids. V. 2. T. Koyama, A. Steinbuchel (eds.). Wiley, Weinheim, 2001: 287-320.
  4. Gronover S.C., Wahler D., Prufer D. Natural rubber biosynthesis and physic-chemical studies of plant derived latex. In: Biotechnology of Biopolymers. M. Elnashar (ed.) InTech, Rijeka, 2011: 75-88 CrossRef
  5. Nasyrov I.Sh., Faizova V.Yu., Zhavoronkov D.A., Shurupov O.K., Vasil'ev V.A. Promyshlennoe proizvodstvo i ispol'zovanie elastomerov, 2020, 2: 34-47 CrossRef (in Russ.).
  6. Araujo-Morera J., Verdejo R., López-Manchado M.A., Santana M.H. Sustainable mobility: the route of tires through the circular economy model. Waste Management, 2021, 126: 309-322 CrossRef
  7. Schwerin M.R., Walsh D.L., Coleman Richardson D., Kisielewski R.W., Kotz R.M., Routson L.B., David Lytle C. Biaxial flex-fatigue and viral penetration of natural rubber latex gloves before and after artificial aging. J. Biomed. Mater. Res., 2002, 63(6): 739-745 CrossRef 
  8. Akhmed'yanova R.A., Miloslavskii D.G., Kharlampidi Kh.E., Vu Minkh Dak, Nguen Tai Tkhai, Nguen Tkhankh Liem. Promyshlennoe proizvodstvo i ispol'zovanie elastomerov, 2015, 4: 3-6 (in Russ.).
  9. Hamzah R., Bakar M.A., Dahham O.S., Zulkepli N.N., Dahham S.S. A structural study of epoxidized natural rubber (ENR-50) ring opening under mild acidic condition. J. Appl. Polym. Sci., 2016, 133(43): 44123 CrossRef
  10. Cornish K. Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species. Natural Product Report, 2001, 18(2): 182-189 CrossRef
  11. van Beilen J., Poirier Y. Guayule and Russian dandelion as alternative sources of natural rubber. Critical Reviews in Biotechnology, 2007, 27: 217-231 CrossRef
  12. van Beilen J., Poirier Y. Establishment of new crops for the production of natural rubber. Trends in Biotechnology, 2007, 25(11): 522–-529 CrossRef
  13. Mooibroek H., Cornish K. Alternative sources of natural rubber. Applied Microbiology and Biotechnology, 2000, 53: 355-365 CrossRef
  14. Metcalfe C.R. Distribution of latex in the plant kingdom. Economic Botany, 1967, 21: 115-127 CrossRef
  15. Buchanan R.A, Swanson C.L, Weisleder D., Cull I.M. Gutta-producing grasses. Phytochemistry,1979, 18(6): 1069-1071 CrossRef
  16. Tangpakdee J., Tanaka Y., Shiba K., Kawahara S., Sakurai K., Suzuki Y. Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry, 1997, 45(1): 75-80 CrossRef
  17. Cornish K. Alternative natural rubber crops: why should we care? Technology and Innovation, 2017, 18: 245-256 CrossRef
  18. Association of Natural Rubber Producing Countries. ANRPC Releases natural rubber trends & statistics, Dec. 2018. Available: http://www.anrpc.org/html/news-secretariat-details.aspx?ID=9&PID=39&NID=2271. Accessed: 10.12.2021.
  19. Kramer P.J., Kozlowski T.T. Physiology of woody plants. S.G. Pallardy (ed.). Academic Press, NY, 1979.
  20. Guyot J., Le Guen V. A review of a century of studies on South America leaf blight of the rubber tree. Plant Disease, 2018, 102: 1052-1065 CrossRef
  21. Guyot J., Cilas C., Sache I. Influence of host resistance and phenology on South American leaf blight of the rubber tree with special consideration of temporal dynamics. European Journal of Plant Pathology, 2008, 120(2): 111-124 CrossRef
  22. Rousset A., Amor A., Punvichai T., Perino S., Palu S., Dorget M., Pioch D., Chemat F. Guayule (Parthenium argentatum A. Gray), a renewable resource for natural polyisoprene and resin: composition, processes and applications. Molecules, 2021, 26(3): 664 CrossRef
  23. Arias M., Herrero J., Ricobaraza M., Hernandez M., Ritter E. Evaluation of root biomass, rubber and inulin contents in nine Taraxacum kok-saghyz Rodin populations. Industrial Crops and Products, 2016, 83: 316-321 CrossRef
  24. Bosse G. G., Il'in M.M. V knige: Kauchuk i kauchukonosy. Tom. 2 [In: Rubber and rubber plants. Vol. 2]. Moscow, 1953: 136-137 (in Russ.).
  25. Cornish K. Rubber production. In: Encyclopedia of Applied Plant Sciences (Second Edition). V. 3. B. Thomas, B.G. Murray, D.J. Murphy (eds.). Elsevier, 2017b: 410-419 CrossRef
  26. Schurer H. The Macintosh: the paternity of an invention. Transaction of the Newcomen Society, 1951, 28(1): 77-87 CrossRef
  27. Bebb R.L. Chemistry of rubber processing and disposal. Environmental Health Perspectives, 1976, 17: 95-102 CrossRef
  28. He Q., Zhang L., Li T., Li C., Song H., Fan P.J. Genus Sapium (Euphorbiaceae): a review on traditional uses, phytochemistry, and pharmacology. J. Ethnopharmacology, 2021, 277: 114206 CrossRef
  29. Cook O.F. Rubber production from Castilla and Hevea. Science, 1937, 85(2208): 406-407 CrossRef
  30. Priyadarshan P.M., Goncalves P. de S. Hevea gene pool for breeding. Genetic Resources and Crop Evolution, 2003, 50:101-114 CrossRef
  31. Priyadarshan P.M., Clément-Demange A. Breeding Hevea rubber: formal and molecular genetics. Advances in Genetics, 2004, 52: 51-115 CrossRef
  32. Seibert R.J. A study of hevea (with its economic aspects) in the Republic of Peru. Annals of the Missouri Botanical Garden, 1947, 34(3): 261-352 CrossRef
  33. McFadyen R.E., Harvey G.J. Distribution and control of rubber vine, Cryptostegia grandiflora, a major weed in northern Queensland. Plant Protection Quarterly, 1990, 5: 153-155.
  34. Shen X., Zou Z.R. Review on research progress of chemical constituents and bioactivities of Solidago. China Journal of Chinese Materia Medica, 2016, 41: 4303-4313 CrossRef
  35. Garshin M.V., Kartukha A.I., Kuluev B.R. Biomika, 2016, 8(4): 323-333 (in Russ.).
  36. Kutuzova S.N., Brach N.B., Kon'kova N.G., Gavrilova V.A. Biosfera, 2015, 7(4): 392-402 CrossRef (in Russ.).
  37. Bousquet J., Flahault A., Vandenplas O., Ameille J., Duron J. J., Pecquet C., Chevrie K., Annesi-Maesano I. Natural rubber latex allergy among health care workers: A systematic review of the evidence. Journal of Allergy and Clinical Immunology, 2006,118(2): 447-454 CrossRef
  38. Siler D.J., Cornish K., Hamilton R.G. Absence of cross-reactivity of IgE antibodies from subjects allergic to Hevea brasiliensis latex with a new source of natural rubber latex from guayule (Parthenium argentatum). Journal of Allergy and Clinical Immunology, 1996, 98(5, Pt.1): 895-902 CrossRef
  39. Nakayama F.S. Guayule future development. Industrial Crops and Products, 2005, 22(1): 3-13 CrossRef
  40. Tanaka Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chemistry and Technology, 2001, 74(3): 355-375 CrossRef
  41. Amerik A.Yu., Martirosyan Yu.Tc., Gachok I.V. Regulation of natural rubber biosynthesis by proteins associated with rubber particles. Russian Journal of Bioorganic Chemistry, 2018, 44(2): 140-149 CrossRef
  42. Amerik A.Y., Martirosyan Y.T., Martirosyan L.Y., Goldberg V.M., Uteulin K.R., Varfolomeev S.D. Molecular genetic analysis of natural rubber biosynthesis. Russian Journal of Plant Physiology, 2021, 68(1): 31-45 CrossRef
  43. Yamashita S., Takahashi S. Molecular mechanisms of natural rubber biosynthesis. Annual Review of Biochemistry, 2020, 89: 24.1-24.31 CrossRef
  44. Cornish K., Siler D.J., Grosjean O.K., Goodman N. Fundamental similarities in rubber particle architecture and function in three evolutionarily divergent plant species. Journal of Natural Rubber Research, 1993, 8(4): 275-285.
  45. Cornish K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry, 2001, 57: 1123-1134 CrossRef
  46. McMahan C.M., Kostyal D., Lhamo D., Cornish K. Protein influences on guayule and hevea natural rubber sol and gel. Journal of Applied Polymer Science, 2015, 132(23): 42051-42057 CrossRef
  47. Ikeda Y., Junkong P., Ohashi T., Phakkeeree T., Sakaki Y., Tohsan A., Kohjiya S., Cornish K. Strain-induced crystallization behaviours of natural rubbers from guayule and rubber dandelion revealed by simultaneous time-resolved WAXD/tensile measurements: indispensable function for sustainable resources. RSC Advances, 2016, 6: 95601-95610 CrossRef
  48. Thuong N.T., Yamamoto O., Nghia P.T., Cornish K., Kawahara S. Effect of naturally occurring crosslinking junctions on green strength of natural rubber. Polymers Advanced Technologies, 2016, 28(3): 303-311 CrossRef
  49. Cornish K., Wood D.F., Windle J.J. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta, 1999, 210(1): 85-96 CrossRef
  50. Wood D.F., Cornish K. Microstructure of purified rubber particles. International Journal of Plant Sciences, 2000, 161(3): 435-445 CrossRef
  51. Castelblanque L., Balaguer B., Martí C., Rodríguez J.J., Orozco M., Vera P. Multiple facets of laticifer cells. Plant Signaling & Behavior, 2017, 12(7): e1300743 CrossRef
  52. Ramos M.V., Demarco D., da Costa Souza I.C., de Freitas C.D.T. Laticifers, latex, and their role in plant defense. Trends in Plant Science, 2019, 24(6): 553-567 CrossRef
  53. Backhaus R.A. Rubber formation in plants — a mini-review. Israel Journal of Botany, 1985, 34(2-4): 283-293.
  54. Siler D.J., Goodrich-Tanrikulu M., Cornish K., Stafford A.E., McKeon T.A. Composition of rubber particles of Hevea brasiliensis, Parthenium argentatum, Ficus elastica, and Euphorbia lactiflua indicates unconventional surface structure. Plant Physiology and Biochemistry, 1997, 35(11): 881-889.
  55. Estilai A., Ray D.T. Genetics, cytogenetics, and breeding of guayule. In: Guayule natural rubber. A technical publication with emphasis on recent findings. J.W Whitworth, E.E. Whitehead (eds.). USDA, Tucson, 1991: 47-92.
  56. Ray D.T., Coffelt T.A., Dierig D A. Breeding guayule for commercial production. Industrial Crops and Products, 2005, 22(1): 15-25 CrossRef
  57. Thompson A.E., Ray D.T. Breeding guayule. In: Plant Breeding Reviews. J. Janick (ed.). Willley, 1989: 93-165 CrossRef
  58. Thompson A.E. Breeding new industrial crops. In: Advances in new crops. J. Janick, J.E. Simon (eds.). Timber Press, Portland, OR, 1990: 100-103.
  59. Kim I.J., Ryu S.B., Kwak Y.S., Kang H. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro. Journal of Experimental Botany, 2004, 55(396): 377-385 CrossRef
  60. Benedict C.R., Madhavan S., Greenblatt G.A., Venkatachalam K.V., Foster M.A. The enzymatic synthesis of rubber polymer in Parthenium argentatum Gray. Plant Physiology, 1990, 92(3): 816-821 CrossRef
  61. Pan Z., Durst F., Werck-Reichhart D., Gardner H.W., Camara B., Cornish K., Backhaus R.A. The major protein of guayule rubber particles is a cytochrome P450. Characterization based on cDNA cloning and spectroscopic analysis of the solubilized enzyme and its reaction products. Journal of Biological Chemistry, 1995, 270(15): 8487-8494 CrossRef
  62. Lakusta A.M., Kwon M., Kwon E.J.G., Stonebloom S., Scheller H.V., Ro D.K. Molecular studies of the protein complexes involving cis-prenyltransferase in guayule (Parthenium argentatum), an alternative rubber-producing plant. Frontiers in Plant Science, 2019, 10: 165 CrossRef
  63. Hodgins K.A., Lai Z., Oliveira L.O., Still D.W., Scascitelli M., Barker M.S., Kane N.C., Dempewolf H., Kozik A., Kesseli R.V., Burke J.M., Michelmore R.W., Reiseberg L.H. Genomics of Compositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives. Molecular Ecology Resources, 2014, 14(1): 166-177 CrossRef
  64. Qu Y., Chakrabarty R., Tran H.T., Kwon E.J., Kwon M., Nguyen T.D., Ro D.K. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. Journal of Biological Chemistry, 2015, 290(4): 1898-1914 CrossRef
  65. Kwon M., Kwon E.J.G., Ro D.K. cis-Prenyltransferase and polymer analysis from a natural rubber perspective. Methods in Enzymology, 2016, 576: 121-145 CrossRef
  66. Welti M. Regulation of dolichol-linked glycosylation. Glycoconjugate Journal, 2013, 30(1): 51-56 CrossRef
  67. Mihail J.D., Alcorn S.M., Whitworth J.W. Plant health: the interactions of Guayule, microorganisms, arthropods, and weeds. In: Guayule natural rubber. A technical publication with emphasis on recent findings. J.W. Whitworth, E.E. Whitehead (eds.). USDA, Tucson, 1991: 173-216.
  68. Nakayama F.S. Influence of environment and management practices on rubber quantity and quality. In: Guayule natural rubber. A technical publication with emphasis on recent findings. J.W. Whitworth, E. E. Whitehead (eds.). USDA, Tucson, 1991: 217-240.
  69. Estilai A. Biomass, rubber, and resin yield potentials of new guayule germplasm. Bioresource Technology, 1991, 35(2): 119-125 CrossRef
  70. Jones E.P. Recovery of rubber latex from Guayule shrub. Industrial & Engineering Chemistry, 1948, 40(5): 864-874.
  71. Wagner J.P., Parma D.G. Continuous solvent extraction process for recovery of natural rubber from guayule. Polymer-Plastics Technology and Engineering, 1988, 27(3): 335-350 CrossRef
  72. Cornish K., McMahan C.M., Pearson C.H., Ray D.T., Shintani D K. Biotechnological development of domestic rubber producing crops. Rubber World, 2005, 233(2): 40-44.
  73. Ray D.T. Guayule: a source of natural rubber. In: New crops. J. Janick, J.E. Simon (eds.). Wiley, New York, 1993: 338-343.
  74. Schloman W.W. Processing guayule for latex and bulk rubber. Industrial Crops and Products, 2005, 22(1): 41-47 CrossRef
  75. Il'in M.M. V knige: Kauchuk i kauchukonosy. Tom 2 [In: Rubber and rubber plants. Vol. 2]. Moscow-Leningrad, 1953: 9-104 (in Russ.).
  76. Lipshits S.Yu. V knige: Kauchuk i kauchukonosy. Tom 2 [In: Rubber and rubber plants. Vol. 2]. Moscow-Leningrad, 1953: 153-172 (in Russ.).
  77. Whaley W.G., Bowen J.S. Russian dandelion (Kok-saghyz). An emergency source of natural rubber. USDA, government publication no. 6. Washington DC, 1947.
  78. Russian rubber plants. Nature, 1945, 155: 229-230 CrossRef
  79. Heim S. Kalorien, Kautschuk, Karrieren. Pflanzenzu chtung und Landwirtschaftliche Forschung in Kaiser-Wilhelm-Instituten 1933-1945. Wallstein Verlag, Gottingen, 2003.
  80. Polhamus L.G. Rubber: botany, production, and utilization. Leonard Hill Limited, London, 1962.
  81. Wollenweber T.E, van Deenen N., Roelfs K.-U., Prüfer D., Gronover C.S. Microscopic and transcriptomic analysis of pollination processes in self-incompatible Taraxacum koksaghyz. Plants, 2021, 10(3): 555 CrossRef
  82. Kupzow A.J. Theoretical basis of plant domestication. Theoretical and Applied Genetics,1980, 57(2): 65-74 CrossRef
  83. Tysdal H.M., Rands R.D. Breeding for disease resistance and higher rubber yield in Hevea, Guayule and Kok-saghyz. Agronomy Journal, 1953, 45(6): 234-243 CrossRef
  84. Ramirez-Cadavid D.A., Cornish K., Michel F.C. Jr. Taraxacum kok-saghyz (TK): compositional analysis of a feedstock for natural rubber and other bioproducts Industrial Crops and Products, 2017, 107: 624-640 CrossRef
  85. Parmenter G. Taraxacum officinale — common dandelion, Lion’s tooth. Annual Report. New Zealand Institute for Crops and Food Research, Mana Kai Rangahau, 2002.
  86. Yamashita S., Yamaguchi H., Waki T., Aoki Y., Mizuno M., Yanbe F., Ishii T., Funaki A., Tozawa Y., Miyagi-Inoue Y., Fushihara K., Nakayama T., Takahashi S. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. eLife, 2016, 5: e19022 CrossRef
  87. Asawatreratanakul K., Zhang Y.-W., Wititsuwannakul D., Wititsuwannakul R., Takahashi S., Rattanapittayaporn A., Koyama T. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. European Journal of Biochemistry, 2003, 270(23): 4671-4680 CrossRef
  88. Oh S.K., Hwan Han K., Ryu S.B., Kang H. Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. Journal of Biological Chemistry, 2000, 275(24): 18482-18488 CrossRef
  89. Sato M., Sato K., Nishimura S., Hirata A., Kato J., Nakano A. The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Molecular and Cellular Biology, 1999, 19(1): 471-483 CrossRef
  90. Schmidt T., Hillebrand A., Wurbs D., Wahler D., Lenders M., Gronover C.H., Prufer D. Molecular cloning and characterization of rubber biosynthetic genes from Taraxacum koksaghyz. Plant Molecular Biology Reporter, 2010, 28(2): 277-284 CrossRef
  91. Post J., van Deenen N., Fricke J., Kowalski N., Wurbs D., Schaller H., Eisenreich W., Huber C., Twyman R.M., Prufer D., Gronover C.S. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiology, 2012, 158(3): 1406-1417 CrossRef
  92. Oh S.K., Kang H., Shin D.H., Yang J., Chow K.S., Yeang H.Y., Wagner B., Breiteneder H., Han K.H. Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. Journal of Biological Chemistry, 1999, 274(24): 17132-17138 CrossRef
  93. Collins-Silva J., Nural A.T., Skaggs A., Scott D., Hathwaik U., Woolsey R., Schegg K., McMahan C., Whalen M., Cornish K., Shintani D. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. Phytochemistry, 2012, 79: 46-56 CrossRef
  94. Kharel Y., Koyama T. Molecular analysis of cis-prenyl chain elongating enzymes. Natural Product Reports, 2003, 20: 111-118 CrossRef
  95. Kharel Y., Takahashi S., Yamashita S., Koyama T. Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS Journal, 2006, 273(34): 647-657 CrossRef
  96. Kera K., Takahashi S., Sutoh T., Koyama T., Nakayama T. Identification and characterization of a cis,trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS Journal, 2012, 279(20): 3813-3827 CrossRef
  97. Surmacz L., Plochocka D., Kania M., Danikiewicz W., Swiezewska E. cis-Prenyltransferase atCPT6 produces a family of very short-chain polyisoprenoids in planta. Biochimica et Biophysica Acta, 2014, 1841(2): 240-250 CrossRef
  98. Harrison K.D., Park E.J., Gao N., Kuo A., Rush J.S., Waechter C.J., Lehrman M.A., Sessa W.C. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO Journal, 2011, 30(12): 2490-2500 CrossRef
  99. Park E.J., Grabińska K.A., Guan Z., Stranecky V., Hartmannova H., Hodaňova K., Barešova V., Sovova J., Jozsef L., Ondruškova N., Hansikova H., Honzik T., Zeman J., Hůlkova H., Wen R. Kmoch S., Sessa W.C. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metabolism, 2014, 20(3): 448-457 CrossRef
  100. Epping J., van Deenen N., Niephaus E., Stolze A., Fricke J., Huber C., Eisenreich W., Twyman R.M., Prufer D., Gronover C.S. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. NaturePlants, 2015, 1: 15048 CrossRef
  101. Hallahan D.L., Keiper-Hrynko N.M. Cis-prenyltransferases from the rubber-producing plants Russian dandelion (Taraxacum kok-saghyz) and sunflower (Helianthus annus). US Patent 2004/044173. 2004.
  102. Boguspaev K.K., Portnoi V.Kh., Faleev D.G., Kasymbekov B.K., Turasheva S.K. Vestnik KazNU, seriya biologicheskaya, 2015, 3(65): 323-331 (in Russ.).
  103. Turasheva S.K., Boguspaev K.K., Faleev D.G., Al'nurova A.A., Kapytina A.I. Vosstanovlenie chislennosti dikorastushchego kauchukonosnogo endemika Scorzonera tau-saghyz Lipsch. et Bosse. VestnikKazNU, seriyaekologicheskaya, 2016, 2(47): 141-150.
  104. Faleev D.G., Kasymbekov B.K., Faleev E.G., Myrzagaliev Zh.Zh., Boguspaev K.K. Vestnik KazNU, seriya biologicheskaya, 2018, 3(76): 143-151 (in Russ.).
  105. Smith S., Read D. Mycorrhizal symbiosis, 3rd Edition. Academic Press, NY, 2008 CrossRef
  106. Vigneron N., Radhakrishnan G.V., Delaux P-M. What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis? Current Opinion in Plant Biology, 2018, 44: 49-56 CrossRef
  107. Miozzi L., Vaira A.M., Catoni M., Fiorilli V., Accotto G.P., Lanfranco L. Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses? Frontiers in Microbiology, 2019, 10: 1238 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)