PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.1.66eng

UDC: 633.111.1:631.559.2:575.167:574.2

 

COMPARATIVE ASSESSMENT OF SPRING SOFT WHEAT LINES (Triticum aestivum L.) IN THE STEPPE ZONE OF THE NORTH KAZAKHSTAN REGION

T.J. Aidarbekova1, G.T. Syzdykova1, N.V. Malitskaya2 ,
R.E. Nurgaziyev1, А.Т. Husainov1, M.U. Zhabayeva3,
S.K. Makhanova1, O.D. Shoykin4

1Kokshetau Shokan Ualikhanov University, 76, Abay st., Kokshetau, 020000 Kazakhstan, е-mail aidarbekova_t@mail.ru, syzdykova_1956@mail.ru, nurrashit@mail.ru, abil_tokan@mail.ru, saulemach@mail.ru;
2North Kazakhstan Manash Kozybayev University, 86, Pushkin st., Petropavlovsk, 150000 Kazakhstan, е-mail natali_gorec@mail.ru ( corresponding author);
3Kokshetau Abay Myrzakhmetov University, 189а, Auezov st., Kokshetau, 020000 Kazakhstan, е-mail
marhaba_zhabaeva@mail.ru;
4Stolypin Omsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, е-mail od.shoykin@omgau.org

ORCID:
Aidarbekova T.J. orcid.org/0000-0001-9486-6734
Husainov А.Т. orcid.org/0000-0001-6328-4133
Syzdykova G.T. orcid.org/0000-0002-3511-8311
Zhabayeva M.U. orcid.org/0000-0003-0300-634Х
Malitskaya N.V. orcid.org/0000-0003-4382-2357
Makhanova S.K. orcid.org/0000-0001-9084-348Х
Nurgaziyev R.E. orcid.org/0000-0001-6582-635Х
Shoykin O.D. orcid.org/0000-0001-8803-2645

October 19, 2021

 

Spring soft wheat (Triticum aestivum L.) is one of the most highly demanded crops in Kazakhstan. In 2020, the gross harvest of spring soft wheat reached in recent years the highest outcome of 18.0 million tons. The most important resource for increasing the yield of spring soft wheat is the adaptability and implementation of the variety according to a complex of economically valuable traits. New varieties must be flexible under different environmental conditions. In the presented work, we, for the first time, have identified lines of spring soft wheat well adapted to the conditions of the North Kazakhstan region, distinguished by productivity, a set of economically valuable parameters, environmental stability and plasticity. The aims of the work were i) a comparative assessment of the lines of spring soft wheat of different ripeness groups to the highest extent adapted to the conditions of the steppe zone of Northern Kazakhstan and ii) the assessment of economically valuable traits and their interrelationship with grain yield. The trial was performed using an extended set of spring soft wheat lines of various ripeness from research centers of Kazakhstan (fallow soil, the North Kazakhstan Agricultural Experimental Station LLP, Republic of Kazakhstan, 2018-2020). A total of 28 lines were studied, including 20 middle-early and 8 mid-season lines. Two cultivars registered in North Kazakhstan region served as the standards, the middle-early cv. Astana and the mid-season cv. Omskaya 35. The duration of inter phase and vegetation periods, yield and the main elements of yield structure were studied. The length of growing season was 79 days for the mid-early lines and 80 days for the mid-ripening lines. A shorter growing season was characteristic for the mid-early lines Lutescens 1125 SP 2/09 (73 days), Lutescens 528 (74 days), Lutescens 630 SP 2/08 (74 days), Lutescens 742 SP 2/19 (74 days), Lutescens 715 SP 2/04 (75 days), Lutescens 687 SP 2/04(75 days), Lutescens 1148 SP 2/09 (76 days) vs. the standard cv. Astana (79 days). In the mid-season group, the Liniya 12/93-01(82 days), Liniya 33/93-01-15 (82 days), Lutescens 2194 (82 days), Lutescens 1919 (85 days) stood out for the optimal length of growing season vs. the standard cv. Omskaya 35 (80 days). In terms of crop yield in the mid-early ripeness group, the following lines were distinguished: Lutescens 588 SP 2/05 (2.3 t/ha), Erythrospermum 738 2/09 (2.3 t/ha), Lutescens 857 SP 2/05 (2.4 t/ha), Lutescens 821 SP 1/08 (2.4 t/ha), Lutescens 715 SP 2/04 (2.4 t/ha) vs. cv. Astana (2.0 t/ha). In the mid-season group, Lutescens 371/06 (2.4 t/ha), Line 12/93-01-10 (2.4 t/ha), Lutescens 1919 (2.5 t/ha), Line 55/94-01 (2.6 t/ha), and Line 33/93-01-15 (2.8 t/ha) were superior to cv. Omskaya 35 (1.8 t/ha). In the studied mid-early lines, the main elements of the yield structure were the number of productive stems (154-244 stems/m2), the grain number per ear (21-28 grains), and the 1000-grain weight of 36.6-43.4 g. In the mid-season group, the number of productive stems was 170-252 stems/m2, the number of grains per ear was 23-30 grains, and the 1000-grain weight of was 34.2-45.2 g. The yield of mid-early lines showed correlation with the grain number per ear (r = 0.35-0.86, p = 0.36-1.29) and tight correlation with the number of productive stems (r = 0.68-0.83, p = 0.82-1.18). The yield of mid-season lines correlated with the number of productive stems (r = 0.74-0.86, p = 0.95-1.29) and the grain number per ear (r = 0.31-0.71, p = 0.32-0.88). The correlation between yield of the studied lines and the 1000-grain weight was medium (r = 0.37-0.54, p = 0.38-0.60) and, in a dry year, weakly negative (r = -0.16, p = 0, 16). Therefore, for the North Kazakhstan steppe zone, we propose to involve the mid-early lines Lutescens 715 SP2/04, Lutescens 821 SP2/08, Lutescens 588 SP2/05, Erythrospermum 738 2/09 and mid-season Line 33/93-01-15, Line 55/94-01, Lutescens 371/06, Lutescens 1919, Line 12/93-01-10 in breeding for drought resistance and adaptive potential.  

Keywords: spring soft wheat, mid-early lines, mid-ripe lines, growing season length, grain productivity, yield structure elements.

 

REFERENCES

  1. Ray D.K., Mueller N.D., West P.C., Foley J.A. Yield trends are insufficient to double global crop production by 2050.PLoS ONE, 2013, 8(6): e66428 CrossRef
  2. Ramankutty N., Mehrabi Z., Waha K., Jarvis L., Kremen C., Herrero M., Rieseberg L.H. Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology, 2018, 69: 789-815 CrossRef
  3. Hall A.J., Richards R.A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 2013, 143: 18-33 CrossRef
  4. Foulkes M.J., Reynolds M.P. Chapter 16 — Breeding challenge: improving yield potential. In: Crop physiology (Second edition). Applications for genetic improvement and agronomy. V.O. Sadras, D.F. Calderini (eds.). Academic Press, Elsevier, 2015: 397-421 CrossRef
  5. Flohr B.M., Hunt J.R., Kirkegaard J.A., Evans J.R., Swan A., Rheinheimer B. Genetic gains in nsw wheat cultivars from 1901 to 2014 as revealed from synchronous flowering during the optimum period. European Journal of Agronomy, 2018, 98: 1-13 CrossRef
  6. Lopes M.S., Reynolds M.P., Manes Y., Singh R.P., Crossa J., Braun H.J. Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “Historic” set representing 30 years of breeding. Crop Science, 2012, 52(3): 1123-1131 CrossRef
  7. Novokhatin V.V. The theoretical justification of intensive genetic potential of the varieties of soft wheat (Triticum aestivum L.). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(5): 627-635 CrossRef
  8. Kuzhakhmetov B.A. Izvestiya Orenburgskogo gosudarstvennogo universiteta, 2011, 3(31): 28-30 (in Russ.).
  9. Valekzhanin V.S., Korobeinikov N.I. Dostizheniya nauki i tekhniki APK, 2015, 29(6): 35-37 (in Russ.).
  10. Kozlenko N.P., Popolzukhina N.A., Popolzukhin P.V. Omskii nauchnyi vestnik,2015, 1(138): 138-141 (in Russ.).
  11. Li P., Chen J., Wu P. Agronomic characteristics and grain yield of 30 spring wheat genotypes under drought stress and nonstress conditions. Agronomy Journal, 2011, 103(6): 1619-1628 CrossRef
  12. Yakunina N.A., Popolzukhina N.A., Shmakova O.A., Popolzukhin P.V., Bayakhmetova S.E., Dashkevich S.M., Mamykina S.S., Babkenov A.T. Sel'skokhozyaistvennyi zhurnal, 2013, 3(6): 308-311 (in Russ.).
  13. Upadhyay D., Budhlakoti N., Singh A.K., Bansal R., Kumari J., Chaudhary N., Padaria J.C., Sareen S., Kumar S. Drought tolerance in Triticum aestivum L. genotypes associated with enhanced antioxidative protection and declined lipid peroxidation. 3 Biotech, 2020, 10(6): 281 CrossRef
  14. AbdElgawad H., Zinta G., Beemster G.T.S., Janssens I.A., Asard H. Future climate CO2 levels mitigate stress impact on plants: increased defense or decreased challenge? Frontiers in plant science, 2016, 7: 556 CrossRef
  15. Opredelenie organicheskogo veshchestva (gumusa) po metodu Tyurina v modifikatsii TSINAO: GOST 26213-91 [Determination of organic matter (humus) according to the Tyurin method in the modification of the TSINAO: GOST 26213-91]. Moscow, 2021 (in Russ.).
  16. Pochvy. Metodyopredeleniyaudel'noielektricheskoiprovodimosti, pHiplotnogoostatkavodnoivytyazhki: GOST 26423-85 [Soils. Methods for determining the specific electrical conductivity, pH and dense residue of water extract: GOST 26423-85]. Moscow, 2011 (in Russ.).
  17. Opredelenie nitratov po metodu TSINAO: GOST 26488-85 [Determination of nitrates by the TSINAO method: GOST 26488-85]. Moscow, 2019 (in Russ.).
  18. Opredelenie podvizhnogo fosfora i kaliya v karbonatnykh pochvakh po metodu Machigina v modifikatsii TSINAO: GOST 26205-91 [Determination of mobile phosphorus and potassium in carbonate soils by the Machigin method in the modification of TSINAO: GOST 26205-91]. Moscow, 2020 (in Russ.).
  19. Fedin M.A. Metodika gosudarstvennogo sortoispytaniya sel'skokhozyaistvennykh kul'tur [Methodology of state variety testing of agricultural crops]. Moscow, 1989 (in Russ.).
  20. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii) [Methods of field trials]. Moscow, 1985 (in Russ.).
  21. Trenberth K.E. Changes in precipitation with climate change. ClimateResearch,2011, 47(1-2): 123-138 CrossRef
  22. Ovenden B., Milgate A., Wade L., Rebetzke G., Holland J.B. Genome-wide associations for water-soluble carbohydrate concentration and relative maturity in wheat using SNP and dArT marker arrays. G3 Genes|Genomes|Genetics, 2017, 7(8): 2821-2830 CrossRef
  23. Nawaz A., Farooq M., Cheema S.A., Yasmeen A., Wahid A. Stay green character at grain filling ensures resistance against sredniee in wheat. International Journal of Agriculture and Biology, 2013, 15(6): 1272-1276. 
  24. Irmulatov B.R., Abdullaev K.K., Komarov A.A., Yakushev V.V. Prospects for precision management of wheat productivity in the conditions of Northern Kazakhstan. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(1): 92-102 CrossRef
  25. Krupnov V.A. Drought and wheat breeding: system approach. Sel'skokhozyaistvennaya biologiya [Agricultural Biology],2011, 1: 12-23 (in Russ.).
  26. Kobata T., Koç M., Barutçular C., Tanno K., Inagaki M. Harvest index is a critical factor influencing the grain yield of diverse wheat species under rain-fed conditions in the Mediterranean zone of southeastern Turkey and northern Syria. Plant Production Science, 2018, 21(2): 71-82 CrossRef
  27. Mondal S., Singh R.P., Huerta-Espino J., Kehel, Z., Autrique E. Characterization of heat- and drought-stress tolerance in high-yielding spring wheat. Crop Science, 2015, 55(4): 1552-1562 CrossRef
  28. Bevan M., Uauy C., Wulff B.B.H., Zhou J., Krasileva K., Clark M.D. Genomic innovation for crop improvement. Nature,2017,543: 346-354 (doi: 10.1038/nature22011">CrossRef
  29. Goncharov P.L., Kurkova S.V., Osipova G.M. Dostizheniya nauki i tekhniki APK, 2013, 1: 5-7 (in Russ.).
  30. Díaz A., Zikhali M., Turner A.S., Isaac P., Laurie D.A. Copy number variation affecting the photoperiod-b1 and vernalization-a1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE, 2012, 7(3): 33234 CrossRef
  31. Yu S.-M., Lo S.-F., Ho T.-H.D. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science,2015, 20(12): 844-857 CrossRef
  32. Martinez-Barajas E., Delatte T., Schluepmann H., Jong G.J., Somsen G.W., Nunes C., Primavesi L.F., Coello P., Mitchell R.A., Paul M.J. Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiology, 2011, 156(1): 373-381 CrossRef
  33. Zakharov V.G., Yakovleva O.D. Dostizheniya nauki i tekhniki APK, 2015, 10: 53-57 (in Russ.).
  34. Li M., Liu Y., Ma J., Zhang P., Wang C., Su J., Yang D. Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress. BMC Genetics, 2020, 21: 50 CrossRef
  35. Eliseev V.I, Sandakova G.N. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2019, 2(76): 37-39 (in Russ.).
  36. Ionova E.V. Zernovoe khozyaistvo Rossii, 2011, 2(14): 37-41 (in Russ.).
  37. Zhang H., Chen J., Li R., Deng Z., Zhang K., Liu B., Tian J. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop Journal, 2016, 4(3): 220-228 CrossRef
  38. Lawlor D.W., Paul M.J. Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Frontiers in Plant Science, 2014, 5: 418 CrossRef
  39. Abdolshahi R., Nazari M., Safarian A., Sadathossini T.S., Salarpour M., Amiri H. Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crops Research, 2015, 174: 20-29 CrossRef
  40. Slafer G.A., Elia M., Savin R., García G.A., Terrile I.I., Ferrante A., Miralles D.J., González F.G. Fruiting efficiency: an alternative trait to further rise wheat yield. Food and Energy Security, 2015, 4(2): 92-109 CrossRef
  41. Alonso M.P., Mirabella N.E., Panelo J.S., Cendoya M.G, Pontaroli A.C. Selection for high spike fertility index increases genetic progress in grain yield and stability in bread wheat. Euphytica, 2018, 214: 112 CrossRef
  42. Simmonds J., Scott P., Brinton J., Teresa C.M., Bush M., Blanco del A., Dubcovsky J., Uauy S.A. Splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theoretical and Applied Genetics, 2016, 129: 1099-1112 CrossRef
  43. Lázaro l., Abbate P. Cultivar effects on relationship between grain number and photothermal quotient or spike dry weight in wheat. Journal of Agricultural Science, 2012, 150(4): 442-459 CrossRef
  44. Luján Basile S.M., Ramírez I.A., Crescente J.M., Conde M.B., Demichelis M., Abbate P., Rogers W.J., Pontaroli A.C., Helguera M., Vanzetti L.S. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biology, 2019, 19(1): 553 CrossRef
  45. Krasnova YU.S. Izmenchivost' elementov produktivnosti sortov yarovoi myagkoi pshenitsy v Zapadnoi Sibiri. VestnikOmGAU, 2016, 1(21): 64-70.
  46. Su Z., Hao C., Wang L., Dong Y., Zhang X. Identification and development of a functional marker of tagw2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122(1): 211-223 CrossRef
  47. Valekzhanin V.S., Korobeinikov N.I. Vestnik AGAU, 2020, 3(185): 23-29 (in Russ.).
  48. Abbate P.E., Pontaroli A.S., Lázaro L., Gutheim F. A method of screening for spike fertility in wheat. Journal of Agricultural Science, 2013, 151(3): 322-330 CrossRef
  49. Terrile I.I., Miralles D.J., González F.G. Fruiting efficiency in wheat (Triticum aestivum L): trait response to different growing conditions and its relation to spike dry weight at anthesis and grain weight at harvest. Field Crops Research, 2017, 201: 86-96 CrossRef
  50. Ly D., Huet S., Gauffreteau A., Rincent R., Touzy G., Mini A., Jannink J.-L., Cormier F., Paux E., Lafarge S., Le Gouis J., Charmet G. Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression. Field Crops Research, 2018, 216: 32-41 CrossRef
  51. Korobeinikov N.I., Valekzhanin V.S., Peshkova N.V. Dostizheniya nauki i tekhniki APK, 2015, 29(6): 21-26 (in Russ.).
  52. Ma L., Li T., Hao C., Wang Y., Chen X., Zhang X. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 2016, 14(5): 1269-1280 CrossRef
  53. Wolde G.M., Mascher M., Schnurbusch T. Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Molecular Genetics and Genomics,2019,294: 457-468 CrossRef
  54. Azam S.M., Mohammad F., Ahmad I., Khalil I.H., Jadoon S.A., Nasim A. Divergence in F3 segregating bread wheat populations. International Journal of Basic & Applied Sciences,2013, 13(03): 94-99.
  55. Babkenov A.T., Kairzhanov Y.K., Mussynov K.M., Bazilova D.S., Zaitseva O.I. Productivity of spring soft wheat cultivars grown in Northern Kazakhstan. Ecology, Environment and Conservation, 2017, 23(2): 786-794.

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)