doi: 10.15389/agrobiology.2021.1.32eng

UDC: 635.21:575.1:577.21

Plants were grown in an experimental artificial climate chamber EACC (Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS).
Supported financially by the Russian Foundation for Basic Research (grant No. 18-29-07007) and the Federal Research Program for 2017-2025, Sub-Program “Potato breeding and seed production”



E.A. Dyachenko ✉, A.V. Kulakova, E.Z. Kochieva, A.V. Shchennikova

Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS, 33/2, Leninskii prospect, Moscow, 119071 Russia, e-mail (✉ corresponding author),,,

Dyachenko E.A.
Kochieva E.Z.
Kulakova A.V.
Shchennikova A.V.

Received June 12, 2020


The plant immunity is aimed at protecting against biotic and abiotic stresses and, therefore, at adapting to adverse environmental conditions. At the first protection step, a wide range of phytopathogenic receptors encoded by resistance R-genes is employed. The presence of a conserved NBS-domain in the receptors makes it possible to profile the plant genome by amplification of R-gene analogues. The method of multilocus NBS-profiling makes it possible to efficiently characterize the plant genome in terms of the representativeness and variability of the NBS-domain containing R-genes. This method is used to study the diversity of R-gene loci in crops and related wild species, as well as the introgressive hybridization phenomena and the R-gene evolution in plant species with varying degrees of pathogen resistance. NBS-profiling is also applied for genotyping GenBank collections, developing markers and saturating genetic maps. The requirement for cultivar genotype certification and profiling, along with a limited number of similar studies in Russia, makes research on the molecular profiling of domestic and foreign cultivars farmed in the Russian Federation relevant. In the present work, NBS-profiling was used for genotyping 65 potato Solanum tuberosum cultivars of mainly modern domestic breeding, as well as the related species Solanum stoloniferum (as an outgroup). Using two primer/enzyme combinations (NBS7/MseI and NBS9/MseI), 204 NBS fragments were generated, of which 144 (70.6 %) were polymorphic and one fragment was unique to cv. Gala. For each cultivar, a specific spectrum of NBS fragments was determined. Analysis of genetic distance matrix revealed a high level of polymorphism (GD = 0.18-0.45 with an average value of 0.33) among the studied cultivars. Genetic distances within the analyzed cultivars varied more than between the cultivars and the accession of S. stoloniferum (GD = 0.27-0.40). The most related cultivars were Solnechny/Pamyati Rogacheva (GD = 0.18) and Velikan/Vympel (GD = 0.19) originated from Lorch Potato Research Institute, and the most distant cultivars were Charoito/Red Scarlett (GD = 0.45). Statistical analysis of NBS-profiling data clustered studied potato cultivars in accordance with the pedigree and resistance to phytopathogens. On the dendrogram and graphs generated using the PAST and Structure 2.3.4, a pronounced tendency to group cultivars by traits of resistance to the Potato virus Y (Potyvirus, Potyviridae) and the Potato leafroll virus (Polerovirus, Luteoviridae) was shown. The primer/enzyme systems used in this study for NBS-profiling can be applied to study the mechanisms of potato resistance to biotic stresses.

Keywords: Solanum tuberosum, Russian cultivars, foreign cultivars, genomic polymorphism, NBS-LRR-profiling, RGA-analysis.



  1. Marone D., Russo M.A., Laidò G., De Leonardis A.M., Mastrangelo A.M. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. International Journal of Molecular Sciences, 2013, 14(4): 7302-7326 CrossRef
  2. Vossen J.H., Dezhsetan S., Esselink D., Arens M., Sanz M.J., Verweij W., Verzaux E., van der Linden C.G. Novel applications of motif-directed profiling to identify disease resistance genes in plants. Plant Methods, 2013, 9(1): 37 CrossRef
  3. Glowacki S., Macioszek V.K., Kononowicz A.K. R proteins as fundamentals of plant innate immunity. Cellular & Molecular Biology Letters, 2010, 16(1): 1-24 CrossRef
  4. van der Linden C.G., Wouters D.C., Mihalka V., Kochieva E.Z., Smulders M.J., Vosman B. Efficient targeting of plant disease resistance loci using NBS profiling. Theoretical and Applied Genetics, 2004, 109(2): 384-393 CrossRef
  5. Calenge F., van der Linden C.G., van de Weg E., Schouten H.J., van Arkel G., Denancé C., Durel C.E. Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theoretical and Applied Genetics, 2005, 110(4): 660-668 CrossRef
  6. Syed N.H., Sørensen A.P., Antonise R., van de Wiel C., van der Linden C.G., van 't Westende W., Hooftman D.A., den Nijs H.C., Flavell A.J. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theoretical and Applied Genetics, 2006, 112(3): 517-527 CrossRef
  7. Mantovani P., van der Linden G., Maccaferri M., Sanguineti M.C., Tuberosa R. Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat. Genome, 2006, 49(11): 1473-1480 CrossRef
  8. Kochieva E.Z., Ryzhova N.N. Doklady akademii nauk, 2009, 425(2): 256-258 (in Russ.).
  9. Puchooa D. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). African Journal of Biotechnology,2004, 3: 253-255 CrossRef
  10. Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D., Novikova L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution, 2013, 60: 1997-2015 CrossRef
  11. Brugmans B., Wouters D., van Os H., Hutten R., van der Linden G., Visser R.G., van Eck H.J., van der Vossen E.A. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling. Theoretical and Applied Genetics, 2008, 117: 1379-1388 CrossRef
  12. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, 4(1): 1-9 (
  13. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959 (
  14. Hubisz M.J., Falush D., Stephens M., Pritchard J.K. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009, 9(5): 1322-1332 CrossRef
  15. Plich J., Przetakiewicz J., Śliwka J., Flis B., Wasilewicz-Flis I., Zimnoch-Guzowska E. Novel gene Sen2 conferring broad-spectrum resistance to Synchytrium endobioticum mapped to potato chromosome XI. Theoretical and Applied Genetics, 2018, 131(11): 2321-2331 CrossRef
  16. Hehl R., Faurie E., Hesselbach J., Salamini F., Witham S. TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theoretical and Applied Genetics, 1999, 98: 379-386 CrossRef
  17. Ballvora A., Hesselbach J., Niewohner J., Leister D., Salamini F., Gebhardt C. Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Molecular and General Genetics, 1995, 249: 82-90 CrossRef
  18. Khiutti A., Afanasenko O., Antonova O., Shuvalov O., Novikova L., Krylova E., Chalaya N., Mironenko N., Spooner D.M., Gavrilenko T. Characterization of resistance to Synchytrium endobioticum in cultivated potato accessions from the collection of Vavilov Institute of Plant Industry (VIR) collection. Plant Breeding, 2012, 131: 744-750 CrossRef
  19. Sanz M.J., Loarce Y., Fominaya A., Vossen J.H., Ferrer E. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. Theoretical and Applied Genetics, 2013, 126(1): 203-218 CrossRef
  20. Rogozina E.V., Khavkin E.E. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 30-41 CrossRef (in Russ.).
  21. Antonova O.Yu., Shvachko N.A., Novikova L.Yu., Shuvalov O.Yu., Kostina L.I., Klimenko N.S., Shuvalova A.R., Gavrilenko T.A. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(5): 596-606 CrossRef (in Russ.).
  22. Savel'eva E.N., Boris K.V., Kochieva E.Z., Kudryavtsev A.M. Genetika, 2016, 52(12): 1463-1468 CrossRef (in Russ.).
  23. Sayar-Turet M., Dreisigacker S., Braun H.J., Hede A., MacCormack R., Boyd L.A. Genetic variation within and between winter wheat genotypes from Turkey, Kazakhstan, and Europe as determined by nucleotide-binding-site profiling. Genome, 2011, 54(5): 419-430 CrossRef
  24. Ma F.F., Wu M., Liu Y.N., Feng X.Y., Wu X.Z., Chen J.Q., Wang B. Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus. Theoretical and Applied Genetics, 2018, 131(2): 253-265 CrossRef
  25. Machida-Hirano R. Diversity of potato genetic resources. Breeding Science, 2015, 65(1): 26-40 CrossRef
  26. Kort J., Ross H., Rumpenhorst H.J., Stone A.R. An international scheme for the identification of pathotypes of potato cyst nematodes Globodera rostochiensis and G. pallida. Nematologica, 1977, 23: 333-339 CrossRef
  27. Limantseva L., Mironenko N., Shuvalov O., Antonova O., Khiutti A., Novikova L., Afanasenko O., Spooner D., Gavrilenko T. Characterization of resistance to Globodera rostochiensis pathotype Ro1 in cultivated and wild potato species accessions. Plant Breeding, 2014, 133(5): 660-665 CrossRef
  28. Barone A., Ritter E., Schachtschabel U., Debener T., Salamini F., Gebhardt C. Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Molecular Genetics and Genomics, 1990, 224(2): 177-182 CrossRef
  29. Bakker E., Achenbach U., Bakker J., van Vliet J., Peleman J., Segers B., van der Heijden S., van der Linde P., Graveland R., Hutten R., van Eck H., Coppoolse E., van der Vossen E., Bakker J., Goverse A. A high-resolution map of the H1 locus harboring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics, 2004, 109(1): 146-152 CrossRef
  30. Klimenko N.S., Antonova O.Yu., Kostina L.I., Mamadbokirova F.T., Gavrilenko T.A. Trudy po prikladnoi botanike, genetike i selektsii, 2017, 178(4): 66-75 CrossRef (in Russ.).
  31. Gavrilenko T.A., Klimenko N.S., Antonova O.Yu., Lebedeva V.A., Evdokimova Z.Z., Gadzhiev N.M., Apalikova O.V., Alpat'eva N.V., Kostina L.I., Zoteeva N.M., Mamadbokirova F.T., Egorova K.V. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(1): 35-45 CrossRef (in Russ.).
  32. Biryukova V.A., Shmyglya I.V., Abrosimova S.B., Zapekina T.I., Meleshin A.A., Mityushkin A.V., Manankov V.V. Zashchita kartofelya, 2015, 1: 3-7 (in Russ.).
  33. Paal J., Henselewski H., Muth J., Meksem K., Menendez C., Salamini F., Ballvora A., Gebhardt C. Molecular cloning of the potato Gro 1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. The Plant Journal,2004, 38(2): 285-297 CrossRef
  34. Finkers-Tomczak A., Bakker E., Boer J., Vossen E., Achenbach U., Golas T., Suryaningrat S., Smant G., Bakker J., Goverse A. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theoretical and Applied Genetics, 2011, 122: 595-608 CrossRef
  35. Ellenby C. Tuber forming species and varieties of the genus Solanum tested for resistance to the potato root eelworm Heterodera rostochiensis Wollenweber. Euphytica, 1954, 3: 195-202 CrossRef
  36. Chaparro-Garcia A., Wilkinson R.C., Gimenez-Ibanez S., Findlay K., Coffey M.D., Zipfel C., Rathjen J.P., Kamoun S., Schornack S. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE, 2011, 6(1): e16608 CrossRef
  37. Leesutthiphonchai W., Vu A.L., Ah-Fong A.M.V., Judelson H.S. How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology, 2018, 108(8): 916-924 CrossRef
  38. Baebler Š., Coll A., Gruden K. Plant molecular responses to Potato Virus Y: a continuum of outcomes from sensitivity and tolerance to resistance. Viruses, 2020, 12(2): pii:E217 CrossRef
  39. Szajko K., Strzelczyk-Żyta D., Marczewski W. Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding, 2014, 34: 267-271 CrossRef
  40. Marczewski W., Flis B., Syller J., Strzelczyk-Zyta D., Hennig J., Gebhardt C. Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical and Applied Genetics,2004, 109(8): 1604-1609 CrossRef
  41. Velásquez A.C., Mihovilovich E., Bonierbale M. Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solanum tuberosum ssp. andigena. Theoretical and Applied Genetics, 2007, 114(6): 1051-1058. CrossRef
  42. de Vries S., von Dahlen J.K., Schnake A., Ginschel S., Schulz B., Rose L.E. Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology,2018, 94(4): fiy037 CrossRef
  43. Klimenko N.S., Antonova O.Yu., Zheltova V.V., Fomina N.A., Kostina L.I., Mamadbokirova F.T., Gavrilenko T.A. Screening of Russian potato cultivars (Solanum tuberosum L.) with DNA markers linked to the genes conferring extreme resistance to Potato Virus Y. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 958-969 CrossRef
  44. Biryukova V.A., Shmyglya I.V., Zharova V.A., Beketova M.P., Rogozina E.V., Mityushkin A.V., Meleshin A.A. Rossiiskaya sel'skokhozyaistvennaya nauka, 2019, 5: 17-22 CrossRef (in Russ.).






Full article PDF (Rus)

Supplement (Rus)