doi: 10.15389/agrobiology.2021.1.3eng

UDC: 631.559:579.64:577.112.3:57.02

The work has been carried out within the framework of the project № 0120U102936 “Development of innovative biotechnology for increasing the stability and productivity of cereals based on a complex of signaling molecules of plant and bacterial origin for environmental protection and restoration” (2020-2024) funded by the National Academy of Sciences of Ukraine.



L.M. Babenko1 , К.О. Romanenko1, O.S. Iungin2, 3, I.V. Kosakovska1

1Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereschenkivska Str., Kyiv, 01004 Ukraine, е-mail (✉ corresponding author),;
2Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150, Akademika Zabolotnogo Str., Kyiv, 03143 Ukraine, е-mail;
3Kyiv National University of Technologies and Design (KNUTD), 2, Nemyrovycha-Danchenka Str., Kyiv, 01011 Ukraine, е-mail

Babenko L.M.
Iungin O.S.
Romanenko К.О.
Коsakivska I.V.

Received June 18, 2020


Acyl homoserine lactones (AHL) are a class of mediator molecules coordinating cell activity in the gram-negative bacteria population. AHLs synchronize individual genomes due to which bacterial populations function as a multicellular organism. AHLs provide a remote signaling between bacteria colonizing the phytosphere that enables the bacterial population to respond to external influences and establish symbiotic or antagonistic relationships with the host plant (A.R. Stacy et al., 2018; A. Shrestha et al., 2020). Autoreception of quantitative parameters of the bacterial population is called "quorum sensing" (QS) (R.G. Abisado et al., 2018). QS systems form autoinducer signaling molecules that easily penetrate from cells into the environment and back into the cell (M.B. Miller et al., 2001; B. Bassler, 2002). QS systems play a key role in the regulation of metabolic and physiological processes in a bacterial cell (M. Frederix et al., 2011; M. Whiteley et al., 2017). Bacterial signaling is perceived by eukaryotes, which form a symbiosis with microbial communities (A. Schenk et al., 2015; L.M. Babenko et al., 2016, 2017). Plant growth and development, nutrients assimilation, and stress resistance are largely determined by the pattern of this interaction (H.P. Bais et al., 2006; R. Ortíz-Castro et al., 2009; S. Basu et al., 2017). In the plant, bacterial signaling is controlled by the quorum quenching (QQ) system (N. Calatrava-Morales et al., 2018), whose mechanism of action is to suppress AHL synthesis by plant metabolites, compete with AHL for binding to receptor proteins, and repression of QS-controlled genes (H. Zhu et al., 2008; R. Sarkar et al., 2015). However, to date, the molecular mechanisms by which plants respond to bacterial signaling are not fully understood. Individual metabolites of AHL signaling have been characterized, but their role in the chemical interaction of partners in most cases requires further study. It has been shown that the QS phenomenon and its participants are involved in the regulation of prokaryotic-eukaryotic interactions, including the formation of biofilms, the synthesis of phytohormones, the transfer of plasmids, the production of virulence factors, bioluminescence, sporulation, and the formation of nodules (L.M. Babenko et al., 2017). Differences in the structure of molecules ensure that bacteria recognize their own AHL and separate foreign ones. The transfer of AHL from a bacterium to a host plant is carried out by means of membrane vesicles (M. Toyofuku, 2019). In recent years, there has been an active study of genetics, genomics, biochemistry, and signaling diversity of QS molecules. The regulation of the functions of the rhizosphere, the most dynamic site of interaction between the plant and the associated microflora with the participation of AHL, is of particular importance in the development of new biotechnological approaches aimed at increasing the yield and stress resistance of agricultural crops. One of the effective technologies for increasing resistance to biotic and abiotic stresses is pre-sowing treatment (priming) of seeds (A. Shrestha et al., 2020). Both direct (on plants) and indirect (on rhizosphere microflora) effects of AHL priming was established (O.V. Moshynets et al., 2019). AHL induce an increase of growth, of photosynthetic pigments content, as well as cause changes in the ratio of phytohormones in organs and tissues, affect the formation of defense mechanisms, which increases the productivity of agricultural crops (A. Schikora, S.T. Schenk, 2016; A. Shrestha et al., 2020). AHL meet the requirements of intensive organic farming, they are considered as promising ecological phytostimulants and phytomodulators capable of safely increasing the quantity and quality of agricultural products.

Keywords: acyl-homoserinе lactones (AHL), quorum sensing (QS), quorum quenching (QQ), plant-microbial signaling, AHL-priming, AHL-mimicry, phytostimulants, phytomodulators, stress resistance.



  1. Thuiller W., Lavorel S., Araújo M., Sykes M., Prentice I.C. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 2005, 102(23): 8245-8250 CrossRef
  2. Hsu J.S., Powell J., Adler P.B. Sensitivity of mean annual primary production to precipitation. Global Change Biology, 2012, 18(7): 2246-2255 CrossRef
  3. Morgun V.V., Kіrіzіi D.A. Fiziologiya i biokhimiya kul'turnykh rastenii, 2012, 44(6): 463-483 (in Russ.).
  4. Sharma A., Kumar V., Shahzad B., Tanveer M., Sidhu G.P.S., Handa N., Kohli S.K., Yadav P., Bali A.S., Parihar R.D., Dar O.I., Singh K., Jasrotia S., Bakshi P., Ramakrishnan M., Kumar S., Bhardwaj R., Thukral A.K. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 2019, 1: 1446 CrossRef
  5. Stamenković S., Beškoski V., Karabegović I., Lazić M., Nikolić N. Microbial fertilizers: a comprehensive review of current findings and future perspectives. Spanish Journal of Agricultural Research, 2018, 16(1): e09R01 CrossRef
  6. Floryszak-Wieczorek J., Arasimowicz-Jelonek M., Abramowski D. BABA-primed defense responses to Phytophthora infestans in the next vegetative progeny of potato. Frontiers in Plant Science, 2015, 6: 844 CrossRef
  7. Schenk S.T., Schikora A. AHL-priming function via oxylipin and salicylic acid. Frontiers in Plant Science, 2015, 5: 784 CrossRef
  8. Moshynets O.V., Babenko L.M., Rogalsky S.P., Iungin O.S., Foster J., Kosakivska I.V., Potters G., Spiers A.J. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS ONE, 2019, 14(2): e0209460 CrossRef
  9. Paradiković N., Vinković T., Vrček I.V., Tkalec M. Natural biostimulants reduce the incidence of BER in sweet yellow pepper plants (Capsicum annuum L.).Agricultural and Food Science, 2013, 22(2): 307-317 CrossRef
  10. Maksimov I.V., Yarullina L.G., Surina O.B. The effect of exogenous phytohormones on resistance of wheat calluses to Tilletia caries (D.C.) Tul. & C. Tul. American Journal of Plant Sciences, 2014, 5(12): 1745-1754 CrossRef
  11. Tsygankova V., Shysha E., Andrusevich Y., Galkin A., Iutynska G., Yemets A., Blume Y. Using of new microbial biostimulants for obtaining in vitro new lines of Triticum aestivum L. cells resistant to nematode H. avenae. European Journal of Biotechnology and Bioscience, 2016, 4(4): 41-53.
  12. Abisado R.G., Benomar S., Klaus J.R., Dandekar A.A., Chandler J.R. Bacterial quorum sensing and microbial community interactions. mBio, 2018, 9(3): e02331-17 CrossRef
  13. Chagas F.O., Pessotti R.C., Caraballo-Rodríguez A.M., Pupo M.T. Chemical signaling involved in plant-microbe interactions. Chemical Society Reviews, 2018, 47(5): 1652-1704 CrossRef
  14. Bassler B.Small talk. Cell-to-cell communication in bacteria. Cell, 2002, 109(4): 421-424 CrossRef
  15. Miller M.B., Bassler B.L. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55: 165-199 CrossRef
  16. Frederix M., Downie A.J. Quorum sensing: regulating the regulators. Advances in Microbial Physiology, 2011, 58: 23-80 CrossRef
  17. Whiteley M., Diggle S.P., Greenberg E.P. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680): 313-320 CrossRef
  18. Schikora A., Schenk S.T., Stein E., Molitor A., Zuccaro A., Kogel K.-H. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiology, 2011, 157(3): 1407-1418 CrossRef
  19. Schikora A., Schenk S.T., Hartmann A. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Molecular Biology, 2016, 90(6): 605-612 CrossRef
  20. Babenko L.M., Shcherbatyuk, M.M., Moshinets' O.V., Kosakіvs'ka I.V. Fiziologiya rastenii i genetika, 2016, 48(6): 63-74 (in Russ.).
  21. Babenko L.M., Moshinets E.V., Rogal'skii S.P., Shcherbatyuk N.N., Suslova O.S., Kosakovskaya I.V. Vіsnik Kharkіvs'kogo natsіonal'nogo agrarnogo unіversitetu, 2017, 1: 106-118.
  22. Bais H.P., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233-266 CrossRef
  23. Basu S., Rabara R., Negi S. Towards a better greener future — an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 2017, 12: 43-49 CrossRef
  24. Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J. The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 2009, 4(8): 701-712 CrossRef
  25. Churchill M.E.A., Chen L. Structural basis of acyl-homoserine lactone-dependent signaling. Chemical Reviews, 2011, 111(1): 68-85 CrossRef
  26. Gupta G., Kumar A., Verma N. Bacterial homoserine lactones as nanocomposite fertilizer and defense regulator for chickpeas. Environmental Science: Nano, 2019, 6(4): 1-20 CrossRef
  27. Belimov A.A., Dodd I.C., Hontzeas N., Theobald J.C., Safronova V.I., Davies W.J. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist, 2009, 181(2): 413-423 CrossRef
  28. Shi S., Richardson A.E., O'Callaghan M., DeAngelis K.M., Jones E.E., Stewart A., Firestone M.K., Condron L.M. Effects of selected root exudates components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77(3): 600-610 CrossRef
  29. Weller D.M., Raaijmakers J., Gardener B., Thomashow L. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40: 309-348 CrossRef
  30. Mendes R., Kruijt M., de Bruijn I., Dekkers E., van der Voort M., Schneider J., Piceno Y.M., DeSantis T.Z., Andersen G.L., Bakker P.A.H.M., Raaijmakers J.M. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 2011, 332(6033): 1097-1100 CrossRef
  31. Finkel O.M., Castrillo G., Herrera Paredes S., Salas González I., Dangl J.L. Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 2017, 38: 155-163 CrossRef
  32. Kan J., Fang R., Jia Y. Interkingdom signaling in plant-microbe interactions. Science China Life Sciences, 2017, 60(8): 785-796 CrossRef
  33. Lugtenberg B. Life of microbes in the rhizosphere. In: Principles of plant-microbe interactions. B. Lugtenberg (eds.). Springer, Cham, 2015: 7-15 CrossRef
  34. Yadav B.K., Akhtar M.S., Panwar J. Rhizospheric plant microbe interactions: key factors to soil fertility and plant nutrition. In: Plant microbes symbiosis: applied facets. N. Arora (eds.). Springer, New Delhi, 2015: 127-145 CrossRef
  35. Nadeem S.M., Naveed M., Ahmad M., Zahir Z.A. Rhizosphere bacteria for crop production and improvement of stress tolerance: Mechanisms of action, applications, and future prospects. In: Plant microbes symbiosis: applied facets. N. Arora (eds.). Springer, New Delhi, 2015: 1-36 CrossRef
  36. Abhilash P.C., Dubey R.K., Tripathi V., Gupta V.K., Singh H.B. Plant growth-promoting microorganisms for environmental sustainability. Trends in Biotechnology, 2016, 34(11): 847-850 CrossRef
  37. Ma Y., Oliveira R.S., Freitas H., Zhang C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant Science, 2016, 7: 918 CrossRef
  38. Ma Y., Rajkumar M., Zhang C., Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 2016, 174: 14-25 CrossRef
  39. Ostapchuk M.O., Polіshchuk I.S., Mazur O.V., Palamarchuk V.D. Sіl's'ke gospodarstvo ta lіsіvnitstvo, 2016, 3: 32-43.
  40. Flemming H.C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 2016, 14(9): 563-575 CrossRef
  41. Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2004, 2(2): 95-108 CrossRef
  42. Schuster M., Sexton D.J., Diggle S.P., Greenberg E.P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annual Review of Microbiology, 2013, 67: 43-63 CrossRef
  43. Stacy A.R., Diggle S.P., Whiteley M. Rules of engagement: defining bacterial communication. Current Opinion in Microbiology, 2012, 15(2): 155-161 CrossRef
  44. Schaefer A.L., Greenberg E.P., Colin M.O., Oda Y., Huang J.J., Bittan-Banin G., Peres C.M., Schmidt S., Juhaszova K., Sufrin J.R., Harwood C.S. A new class of homoserine lactone quorum-sensing signals. Nature, 2008, 454: 595-599 CrossRef
  45. Yajima A. Recent progress in the chemistry and chemical biology of microbial signaling molecules: quorum-sensing pheromones and microbial hormones. Tetrahedron Letters, 2014, 55(17): 2773-2780 CrossRef
  46. Papenfort K., Bassler B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nature Reviews Microbiology, 2016, 14(9): 576-588 CrossRef
  47. Schertzer J.W., Boulette M.L., Whiteley M. More than a signal: non-signalling properties of quorum sensing molecules. Trends in Microbiology, 2009, 17(5): 189-195 CrossRef
  48. Nealson K.H., Platt T., Hastings J.W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104(1): 313-322 CrossRef
  49. Schenk S.T., Hernández-Reyes C., Samans B., Stein E., Neumann C., Schikora M., Reichelt M., Mithöfer A., Becker A., Kogel K.H., Schikora A. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 2014, 26(6): 2708-2723 CrossRef
  50. Fuqua W.C., Wlnans S.C., Greenherg E.R. Quorum sensing in bacteria: the LuxR-Luxl family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994, 176(2): 269-275 CrossRef
  51. Toyofuku M. Bacterial communication through membrane vesicles. Bioscience, Biotechnology, and Biochemistry, 2019, 83(9): 1599-1605 CrossRef
  52. Lopez J.G., Piletska E.V., Whitcombe M.J., Czulak J., Piletsky S.A. Application of molecularly imprinted polymer nanoparticles for degradation of the bacterial autoinducer N-hexanoyl homoserine lactone. Chemical Communications (Cambridge, England), 2019, 55(18): 2664-2667 CrossRef
  53. McBride S.G., Strickland M.S. Quorum sensing modulates microbial efficiency by regulating bacterial investment in nutrient acquisition enzymes. Soil Biology and Biochemistry, 2019, 136: 107514 CrossRef
  54. Tan C.H., Oh H.S., Sheraton V.M., Mancini E., Loo S.C.J., Kjelleberg S., Sloot P.M.A., Rice S.A. Convection and the extracellular matrix dictate inter-and intra-biofilm quorum sensing communication in environmental systems. Environmental Science & Technology, 2020, 54(11): 6730-6740 CrossRef
  55. Rowe S.L., Norman J.S., Friesen M.L. Coercion in the evolution of plant-microbe communication: a perspective. Molecular Plant-Microbe Interactions, 2018, 31(8): 789-794 CrossRef
  56. Calatrava-Morales N., McIntosh M., Soto M. Regulation mediated by N-acyl homoserine lactone quorum sensing signals in the Rhizobium-legume symbiosis. Genes, 2018, 9(5): 263 CrossRef
  57. Zhu H., Sun S.J. Inhibition of bacterial quorum sensing­regulated behaviors bu Tremella fucifonnis extract. Current Microbiology, 2008, 57(5): 418-422 CrossRef
  58. Sarkar R., Mondal S., Vera R., Chakraborty S., Varik R., Roy P., Kumar A., Yadav K.K., Choudhury J., Chaudhary S.K., Samanta S.K., Karmakar S., Das S., Mukherjee R.K., Mukherjee J., Sen T. Antimicrobial properties of Kalanchoe biossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation. Journal of Pharmacy and Pharmacology, 2015, 67(7): 951-962 CrossRef
  59. Foumier-Larente J., Morin M.R., Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Archives of Oral Biology, 2016, 65: 35-43 CrossRef
  60. Ouyang L.J., Li L.M. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla ½ Eucalyptus grandis. Transgenic Research, 2016, 25(4): 441-452 CrossRef
  61. Teplitski M., Robinson J.B., Bauer W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Molecular Plant-Microbe Interactions, 2000, 13(6): 637-648 CrossRef
  62. Gao M., Teplitski M., Robinson J.B., Bauer W.D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Molecular Plant-Microbe Interactions, 2003, 16(9): 827-834 CrossRef
  63. Degrassi G., Devescovi G., Solis R., Steindler L., Venturi V. Oryza sativa rice plants contain molecules that activate different quorum-sensing N-acyl homoserine lactone biosensors and are sensitive to the specific AiiA lactonase. FEMS Microbiology Letters, 2007, 269(2): 213-220 CrossRef
  64. Venturi V., Keel C. Signaling in the rhizosphere. Trends in Plant Science, 2016, 21(3): 187-198 CrossRef
  65. Pérez-Montaño F., Jiménez-Guerrero I., Contreras Sánchez-Matamoros R., López-Baena F.J., Ollero F.J., Rodríguez-Carvajal M.A., Bellogín R.A., Espuny M.R. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Research in Microbiology, 2013, 164: 749-760 CrossRef
  66. Corral-Lugo A., Daddaoua A., Ortega A., Espinosa-Urgel M., Krell T. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling, 2016, 9(409): ra1 CrossRef
  67. Rajamani S., Bauer W.D., Robinson J.B., Farrow J.M. 3rd, Pesci E.S., Teplitski M., Gao M., Sayre R.T., Phillips D.A. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Molecular Plant-Microbe Interactions, 2008, 21(9): 1184-1192 CrossRef
  68. Ahumedo M., Díaz A., Vivas-Reyes R. Theoretical and structural analysis of the active site of the transcriptional regulators LasR and TraR, using molecular docking methodology for identifying potential analogues of acyl homoserine lactones (AHLs) with anti-quorum sensing activity. European Journal of Medicinal Chemistry, 2010, 45(2): 608-615 CrossRef
  69. Keshavan N.D., Chowdhary R.K., Haines D.C., González J.E. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology, 2005, 187(24): 8427-8436 CrossRef
  70. Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai S.D., Patil B.S. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 2010, 109(2): 515-527 CrossRef
  71. Vandeputte O.M., Kiendrebeogo M., Rasamiravaka T., Stévigny C., Dutez P., Rojaonson S., Diallo B., Mol A., Baucher M., El Jaziri M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology, 2011, 157(7): 2120-2132 CrossRef
  72. Nievas F., Vilchez L., Giordano W., Bogino P. Arachis hypogaea L. produces mimic and inhibitory quorum sensing like molecules. Antonie Van Leeuwenhoek, 2017, 110(7): 891-902 CrossRef
  73. Zarkani A.A., Stein E., Röhrich C.R., Schikora M., Evguenieva-Hackenberg E., Degenkolb T., Vilcinskas A., Klug G., Kogel K.H., Schikora A. Homoserine lactones influence the reaction of plants to rhizobia. International Journal of Molecular Sciences, 2013, 14(8): 17122-17146 CrossRef
  74. Delalande L., Faure D., Raffoux A., Uroz S., D'Angelo­Picard C., Elasri M., Carlier A., Berruyer R., Petit A., Williams P., Dessaux Y. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiology Ecology, 2005, 52(1): 13-20 CrossRef
  75. Ortíz-Castro R., Martínes-Trujillo M., López-Bucio J. N-acyl-L­homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arobidopsis thaliana. Plant, Cell & Environment, 2008, 31(10): 1497-1509 CrossRef
  76. Götz C., Fekete A., Gebefuegi I., Forczek T., Fuksová K., Li X., Englmann M., Gryndler M., Hartmann A., Matucha M., Schmitt-Kopplin P., Schröder P. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgaro) and yam bean (Pachyrhizus erosus) plants. Analytical and Bioanalytical Chemistry,2007, 389(5): 1447-1457 CrossRef
  77. Schuhegger R., Ihring A., Gantner S., Bahnweg G., Knappe C., Vogg G., Hutzler P., Schmid M., Breusegem F., Eberl L., Hartmann A., Langebartels C. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell & Environment, 2006, 29(5): 909-918 CrossRef
  78. Khan M., Bhargava P., Goel R. Quorum sensing molecules of Rhizobacteria: a trigger for developing systemic resistance in plants. In: Plant growth promoting rhizobacteria for sustainable stress management. Microorganisms for sustainability, vol. 12 . R. Sayyed, N. Arora, M. Reddy (eds.). Springer, Singapore, 2019: 117-138 CrossRef
  79. Beckers G.J.M., Jaskiewicz M., Liu Y., Underwood W.R., He S.Y., Zhang S., Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 2009, 21(3): 944-953 CrossRef
  80. Breen S., Williams S.J., Winterberg B., Kobe B., Solomon P.S. Wheat PR-1 proteins are targeted by necrotrophic pathogen effectors proteins. Plant Journal, 2016, 88(1): 13-25 CrossRef
  81. Breen S., Williams S.J., Outram M., Kobe B., Solomon P.S. Emerging insights into the functions of pathogenesis-related protein 1. Trends in Plant Science, 2017, 22(10): 871-879 CrossRef
  82. Prodhan M.Y., Munemasa S., Nahar M.N., Nakamura Y., Murata Y. Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiology, 2018, 178(1): 441-450 CrossRef
  83. Montillet J.L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A.V., Douki T., Bigeard J., Laurière C., Chevalier A., Castresana C., Hirt H. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLOS Biology, 2013, 11(3): e1001513 CrossRef
  84. Blatt M. Ca(2+) signalling and control of guard-cell volume in stomata movements. Current Opinion in Plant Biology, 2000, 3(3): 196-204.
  85. Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 2008, 452(7186): 483-486 CrossRef
  86. Khokon M.A.R., Salam M.A., Jammes F., Ye W., Hossain M.A., Okuma E., Nakamura Y., Mori I.C., Kwak J.M., Murata Y. MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 2017, 81(7): 1394-1400 CrossRef
  87. Song S., Jia Z., Xu J., Zhang Z., Bian Z. N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochemical and Biophysical Research Communications, 2011, 414(2): 355-360 CrossRef
  88. Acharya B.R., Jeon B.W., Zhang W., Assmann S.M. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytologist, 2013, 200(4): 1049-1063 CrossRef
  89. Joseph C.M., Phillips D.A. Metabolites from soil bacteria affect plant water relations. Plant Physiology and Biochemistry, 2003, 41(2): 189-192 CrossRef
  90. Liu F., Bian Z., Jia Z., Zhao Q., Song S. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Molecular Plant-Microbe Interactions,2012, 25(5): 677-683 CrossRef
  91. Zhao Q., Zhang C., Jia Z., Huang Y., Li H., Song S. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5: 807 CrossRef
  92. Jin G., Liu F., Ma H., Hao S., Zhao Q., Bian Z., Jia Z., Song S. Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochemical and Biophysical Research Communications, 2012, 417(3): 991-995 CrossRef
  93. Mathesius U., Mulders S., Gao M., Teplitski M., Caetano-Anolles G., Rolfe B.G., Bauer W.D. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proceedings of the National Academy of Sciences, 2003, 100(3): 1444-1449 CrossRef
  94. Lugtenberg B., Kamilova F. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 2009, 63(1): 541-556 CrossRef
  95. Kumar S. Epigenomics of plant’s responses to environmental stress. Epigenomes, 2018, 2(1): 6 CrossRef
  96. Elshakh A.S.A., Anjum S.I., Qiu W., Almoneafy A.A., Li W., Yang Z., Cui Z.-Q., Li B., Sun G.-C., Xie G.-L. Controlling and defence‐related mechanisms of Bacillus strains against bacterial leaf blight of rice. Journal of Phytopathology, 2016, 164(7-8): 534-546 CrossRef
  97. Lareen A., Burton F., Schäfer P. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90(6): 575-587 CrossRef
  98. von Rad U., Klein I., Dobrev P.I., Kottova J., Zazimalova E., Fekete A., Hartmann A., Schmitt-Kopplin P., Durner J. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, 2008, 229(1): 73-85 CrossRef
  99. Zhao Q., Li M., Jia Z., Liu F., Ma H., Huang Y., Song S. AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2016, 29(10): 774-785 CrossRef
  100. Pang Y., Liu X., Ma Y., Chernin L., Berg G., Gao K. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. European Journal of Plant Pathology, 2008, 124(2): 261-268 CrossRef
  101. Shrestha A., Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiology Ecology, 2020, 96(12): fiaa226 CrossRef






Full article PDF (Rus)