PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.1.15eng

UDC: 633.11:631.526.324(571.1)

Acknowledgements:
Supported financially by the Russian Science Foundation (project No. 16-16-10005).

 

PHENOTYPIC AND GENOTYPIC EVALUATION OF SYNTHETIC HEXAPLOID WHEAT LINES (AABBDD) FOR GRAIN PARAMETERS UNDER THE CONDITIONS OF WESTERN SIBERIA

I.V. Pototskaya 1, V.P. Shamanin1, S.S. Shepelev1, V.E. Pozherukova1,
A.I. Morgounov2

1Stolypin Omsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, e-mail iv.pototskaya@omgau.org (✉ corresponding author), vp.shamanin@omgau.org, sergeyschepelew@mail.ru, ve.pozherukova@omgau.org
2International Maize and Wheat Improvement Center (CIMMYT), P.K. 39 Emek, 06511, Ankara, Turkey, e-mail a.morgounov@CGIAR.ORG

ORCID:
Pototskaya I.V. orcid.org/0000-0003-3574-2875
Pozherukova V.E. orcid.org/0000-0001-8429-2167
Shamanin V.P. orcid.org/0000-0003-4767-9957
Morgounov A.I. orcid.org/0000-0001-7082-5655
Shepelev S.S. orcid.org/0000-0002-4282-8725

Received July 25, 2019

 

Wheat is both a vital food crop and an economically important commodity for Russia. Plant breeders are increasingly looking to wild relatives to introduce new genes and alleles to obtain high, stable wheat yields. In this paper, we present the study results for grain morphometric parameters and genotyping with usage of 47 SNP (single nucleotide polymorphisms), including 13 markers assosiated with genes responsible for grain size/weight. For the first time in Western Siberia these  data were obtained for synthetic hexaploid wheat genotypes set (the genome AABBDD) in which the genome D was transferred from Aegilops tauschii, originated from regions with the highest genetic diversity of this species. The evaluation of 47 synthetic hexaploid wheat lines was performed on the experimental field of Omsk SAU (Omsk city) in 2016-2018. The synthetic lines were created in CIMMYT by crossing durum wheat (Triticum durum Desf., АВ genome) with different entries of Aegilops tauschii Coss. (synonym Ae. squarrosa, D genome) from Germaplasm Bank (CIMMYT). Synthetic lines of Kyoto University (Japan) were bred via hybridization of durum wheat variety Langdon (USA) with entries of Aegilops tauschii of different ecological origin. After harvesting the structural analysis of yield components, i.e. the number of tillers per plant, number of spikelets per spike, grains per spike, grains per plant, grain weight per spike, grain weight per plant, 1000-grain weight, was carried out. The basic morphometric parameters of grain (area, length, width, perimeter, circularity) were evaluated. Synthetic lines were genotyped with 47 SNP markers using KASPTM technology («LGC Genomics», UK). Synthetic lines were characterized by low variability of grain parameters (Cv = 3.3-6.5 %), higher grain lenght (7.58 mm), area (21.1 mm2), perimeter (19.7 mm), and thousand kernel weight (34.9-46.7 g) than standard variety Pamyati Azieva. In 2017-2018, the grain yield positively correlated with grain lenght, area, perimeter and negativeley correlated with grain quality indicators (protein and gluten content). An insignificant relationship between the grain lenght and width (r from -0.08 to -0.23) was established. The results indicate that synthetic wheat lines are useful genetic donors for increasing thousand kernel weight due to genes TaTPP6A, TaGW2-6A, TaGASR-A1, TaGS5-3A, TaTGW6, TaTGW-7A, TaCwi-A1, TaGS-D1, and TaCKX-D1. The winter durum wheat varieties, which were used in the creation of synthetic lines, and genes of the A genom mainly contribute to grain size/weight. Synthetic lines from Kyoto University had larger and heavier grains (length 8.22-8.51 mm; thousand kernel weight 43.8-46.4 g) compared to the CIMMYT lines. Hybrid combinations Aisberg/Ae. squarrosa (511), Ukr.-Od.1530.94/Ae. squarrosa (392), Ukr.-Od.1530.94/Ae.squarrosa (1027), and Langdon/Ae. squarrosa had the highest thousand kernel weight. Lines No. 8 Ukr.-Od.1530.94/Ae. squarrosa (392), No. 37 Ukr.-Od.1530.94/Ae. squarrosa (310), No. 44, 46 Ukr.-Od.1530.94/Ae. squarrosa (1027), No. 27 Leuc 84693/Ae. squarrosa (392), No. 41 Ukr.-Od.1530.94/Ae.squarrosa (1027), No. 29 Lang-don/IG 126387 (with exception of TaGW2) are recommended as promisis soucers for pyramiding genes TaCwi-A1,TaGASR-A1, TaGS5-3A, TaGW2, ТaTGW-7A, TaGS-D1, and TaCKX-D1 which are responsible for grain size and thousand kernel weight. The indentified entries in this studies are valuable souces of combination of genes responsible for grain size and thousand kernel weight for breeding under conditions of Western Siberia region. 

Keywords: synthetic wheat, grain size, thousand kernel weight, SNP marker, breeding.

 

REFERENCES

  1. Koval' S.F., Shamanin V.P., Koval' V.S. Strategiya i taktika otbora v selektsii rastenii [Selection strategy and tactics in plant breeding]. Omsk, 2010 (in Russ.).
  2. Morgounov A.I., Belan I., Zelenskiy Y., Roseeva L., Tömösközi S., Békés F., Abugalieva A., Cakmak I., Vargas M., Crossa J. Historial change in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science, 2013, 93(3): 425-433 CrossRef
  3. Gegas V.C., Nazari A., Griffiths S., Simmonds J., Fish L., Orford S., Sayers L., Doonan J.H., Snape J.W. A genetic framework for size and shape variation in wheat. The Plant Cell, 2010, 22(4): 1046-1056 CrossRef
  4. Larionov Yu.S., Gorbunova M.P., Yusova O.A., Larionova O.A. Vestnik Buryatskoi gosudarstvennoi sel'skokhozyaistvennoi akademii im. V.R. Filippova, 2009, 3(16): 89-91 (in Russ.). 
  5. Gan Y., Stobbe E.N. Seedling vigor and grain yield of ‘Roblin’ wheat affected by seed size. Agronomy Journal, 1996, 88(3): 456-460 CrossRef
  6. Cox T.S., Wu J., Wang S., Cai J., Zhohg Q., Fu B. Comparing two approaches for introgression of germaplasm from Aegilops tauschii into common wheat. The Crop Journal, 2017, 5(5): 355-362 CrossRef
  7. Khan Z., Qazi J., Rasheed A., Mujeeb-Kazi A. Diversity in D-genom synthetic hexaploid wheat association panel for seedling emergence traits under salinity stress. Plant Genetic Resources, 2017, 15(6): 488-495 CrossRef
  8. van Ginkel M., Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research, 2007, 104(1-3): 86-94 CrossRef
  9. Chesnokov Yu.V., Pochepnya N.V., Kozlenko L.V., Sitnikov M.N., Mitrofanova O.P., Syukov V.V., Kochetkov D.V., Lovasser U., Berner A. Vavilovskii zhurnal genetiki i selektsii, 2012, 16(4/2): 970-986 (in Russ.). 
  10. Kuchel H., Williams K.J., Langridge P., Eagles H.A., Jefferies S.P. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theoretical and Applied Geneics, 2007, 115(8): 1029-1041 CrossRef
  11. Yan L., Liang F., Xu H., Zhang X., Zhai H., Sun Q., Ni Z. Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes. Frontiers in Plant Science, 2017, 8: 1705 CrossRef
  12. Zhang Y.J., Liu J.D., Xia X.C., He Z.H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014, 34(3): 1097-1107 CrossRef
  13. Valluru R., Reynolds P.M., Salse J. Genetics and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theoretical and Applied Geneics, 2014, 127(7): 1463-1489 CrossRef
  14. Su Z., Hao C., Wang L., Dong Y., Zhang X. Identification and development of a functional marker of TaGW2 asoociated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Geneics, 2011, 122(1): 211-223 CrossRef
  15. Ma D., Yan J., He Z., Wu L., Xia X. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2012, 29(1): 43-52 CrossRef
  16. Dong L.L., Wang F.M., Liu T., Dong Z.Y., Liu A.I., Jing R.L., Mao L., Li Y.W., Liu X., Zhang K.P., Whang D.W. Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Molecular Breeding, 2014, 34(3): 937-947 CrossRef
  17. Hanif M., Gao F.M., Liu J.D., Wen W.E., Zhang Y.J., Rasheed A., Xia X.C., He Z.H., Cao S.H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain and yield in bread wheat. Molecular Breeding, 2016, 36: 1 CrossRef
  18. Rasheed A., Xia X., Ogbonnaya F., Mahmood T., Zhang Z., Mujeeb-Kazi A., He Z. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology, 2014, 14(1): 128 CrossRef
  19. Arora S., Singh N., Kaur S., Bains N.S., Uauy C., Poland J., Chuneja P. Genome- wide association study of grain architecture in wild wheat Aegilops tauschii. Frontiers in Plant Science, 2017, 8: 886 CrossRef
  20. Okamoto Y., Nguyen A.T., Yoshioka M., Iehisa J.C., Takumi S. Identification of quantitative traits loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breeding Science, 2013, 63(4): 423-429 CrossRef
  21. Shamanin V.P., Shepelev S.S., Pozherukova V.E., Pototskaya I.V., Kocherina N.V., Lohwasser U., Börner A., Chesnokov Yu.V. QTL mapping in hexaploid soft wheat (Triticum aestivum L.) in West Siberian plain. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(1): 50-60 CrossRef
  22. Rasheed A., Wen W., Gao F., Zhai S., Jin H., Liu J., Guo Q., Zhang Y., Dreisigacker S., Xia X., He Z. Development and validation of KASP assays for genes underpibnning key economic traits in bread wheat. Theoretical and Applied Geneics, 2016, 129(10): 1843-1860 CrossRef
  23. Jiang Q., Hou J., Hao C., Wang L., Ge H., Dong Y., Zhang X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional and Integrative Genomics, 2011, 11(1): 49-61 CrossRef
  24. Ma L., Li T., Hao C., Wang Y., Chen X., Zhang X. TaGS-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 2016, 14(5): 1269-1280 CrossRef
  25. Zhang P., He Z., Tian X., Gao F., Xu D., Liu J., Wen W., Fu L., Li G., Sui X., Xia X., Wang C., Cao S. Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker. Molecular Breeding, 2017, 37(6): 78 CrossRef
  26. Hou J., Jiang Q., Hao C., Wang Y., Zhang H., Zhang X. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology, 2014, 164(4): 1918-1929 CrossRef
  27. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii). M., 1985.
  28. Marshall D.R., Ellison F.W., Mares D.J. Effects of grain shape and size on milling yields in wheat. I. Theoretical analysis based on simple geometric models. Australian Journal of Agricultural Research, 1984, 35: 619-630 CrossRef
  29. Jiang Y., Jiang Q., Hao C., Hou J., Wang L., Zhang H., Zhang S., Chen X., Zhang X. A yield-associated hene TaCwi, in wheat: its finction, selection and evolution in global breeding revealed by haplotype analysis. Theoretical and Applied Geneics, 2015, 128(1): 131-143 CrossRef
  30. Hu M.-J., Zhang H.-P., Liu K., Cao J.-J., Wang S.-X., Jiang H., Wu Z.-Y., Lu J., Zhu X.F., Xia X.-C., Sun G.-L., Ma C.-X., Chang C. Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Frontiers in Plant Science, 2016, 7: 1902 CrossRef
  31. Krupnov V.A. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(3): 524-534 (in Russ.).   
  32. Eldarov M., Aminov N., van Slageren M. Distribution and ecological diversity of Aegilops L. in the Greater and Lesser Caucasus Regions of Azerbaijan. Genetic Resources and Crop Evolution, 2015, 62(2): 265-273 CrossRef
  33. Kalia B., Wilson D.L., Bowden R.L., Singh R.P., Gill B.S. Adult plant resistance to Puccinia triticina in ageographically diverse collection of Aegilops tauschii. Genetic Resources and Crop Evolution, 2017, 64(5): 913-926 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)