PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.1.3eng

UDC: 633.113.9:[631.523.11+631.547]

Acknowledgements:
The author thanks P.I. Stepochkin for the notes during the revision of the article.
Supported financially by the budget project of the Institute of Cytology and Genetics SB RAS, budget project No. 0324-2015-0005

 

THE USE OF Vrn GENES FOR CREATION OF TRITICALE FORMS WITH DIFFERENT LENGTH OF VEGETATION PERIOD (review)

M.V. Emtseva

Siberian Research Institute for Plant Industry and Breeding – Branch of the Institute of Cytology and Genetics, Siberian branch RAS, 21 ul. C-100, Novosibirsk Province, Krasnoobsk, PO Box 375, 630501 Russia, e-mail emtseva@bionet.nsc.ru (✉ corresponding author)

ORCID:
Emtseva M.V. orcid.org/0000-0003-3911-8551

Received October 7, 2019

 

The advantages and disadvantages of triticale culture are briefly reviewed. The control of the length of vegetative period of spring triticale forms and spontaneous spring triticale mutants is viewed more particularly. Triticale (× Triticosecale Wittmack) is a new agricultural culture that combines valuable traits of wheat and rye. The advantages of triticale are its ability to grow on poor, acid, waterlogged soils; higher, than in wheat, content of protein in grains; its resistance to many fungus diseases. The disadvantages are undersized grains, its tendency to sprouting, lodging, a partial toxicity of grains due to the presence of alkylresorcinols, and a longer, compared to parental forms, vegetation period. The biggest influence on the length of the vegetation period of cereals have vernalization response genes — Vrn. Spring plants have one or more dominant Vrn genes, in winter plants all vrn genes are recessive. Common wheat carries genes Vrn-A1, Vrn-B1, Vrn-D1, located on the chromosomes 5AL, 5BL, 5DL respectively (A.J. Worland, 1996), Vrn-D4 gene, located on the centromeric region of chromosome 5D (N. Kippes et al., 2015) and Vrn-B3 gene on the chromosome 7BS (L. Yan et al., 2006). Rye has Vrn-R1 gene on the chromosome 5RL (J. Plaschke et al., 1993). In triticale there were detected Vrn-A1a, Vrn-B1a, Vrn-B1b and Vrn-B1c alleles (M. Nowak et al., 2014; O.I. Zaitseva et al., 2015). The same alleles were detected previously in common wheat (D.K. Santra et al., 2009; A.B. Shcherban et al., 2012, 2015; J. Milec et al., 2013; I.E. Likhenko et al., 2014). Heading time of plants can be influenced not only by an alteration of nucleotide sequence of Vrn genes, but also by a change of the copy number of these genes (A. Diaz et al., 2012). Vrn genes can influence heading time in the combination with each other. For example, cultivars with three dominant Vrn genes are ripening earlier, than cultivars with one or two dominant Vrn genes, but they have the least productivity (A.F. Stelmakh, 1993; M. Iqbal et al., 2007). It was also reported, that introgression of chromosome 2D shortened the period of triticale vegetation (A.A. Shishkina, 2008; L.V. Koren et al., 2010). Triticales have more prolonged vegetation period compared to parental wheat lines, which can be due to the inhibition of the Vrn genes by rye genome (L.N. Kaminskaya et al., 2005; I.N. Leonova et al., 2005). The genetic control of growth habit of spontaneous spring mutants is currently unknown. It was determined, that the majority of spring mutants are late ripening, and, after autumn sowing, they survive in different extent, what can mean, that they are facultative (P.I. Stepochkin, 2008; P.I. Stepochkin et al., 2008). In Siberia winter triticales occupy considerable areas, but the breeding of spring triticales hasn’t been carried on yet. Spring triticales could increase biodiversity of spring cultures. Thereby creation of spring triticales with different length of vegetative period is of great breeding interest.

Keywords: hexaploid and octoploid triticale, spontaneous spring mutant, wheat, length of vegetative period, Vrn genes.

 

REFERENCES

  1. Ma X.-F., Gustafson J.P. Allopolyploidization-accommodated genomic sequence changes in triticale. Annals of Botany, 2008, 101(6): 825-832 CrossRef
  2. Kalinka A., Achrem M. Reorganization of wheat and rye genomes in octoploid triticale (×Triticosecale). Planta, 2018, 247(4): 807-829 CrossRef
  3. Stepochkin P.I. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2009, 11(203): 26-32 (in Russ.).
  4. Dubovets N.I., Sycheva E.A., Solovei L.A., Shtyk T.I., Bondarevich E.B. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya biyalagichnykh navuk, 2013, 4: 35-44 (in Russ.).
  5. Sechnyak L.K., Sulima Yu.G. Tritikale [Triticale]. Moscow, 1984 (in Russ.).
  6. Limin A.E., Dvorak J., Fowler D.B. Cold hardiness in hexaploid Triticale. Canadian Journal of Plant Science, 1985, 65(3): 487-490 CrossRef
  7. Makhalin M.A. Mezhrodovaya gibridizatsiya zernovykh kolosovykh kul'tur [Intergeneric hybridization of cereal crops]. Moscow, 1992 (in Russ.).
  8. Stepochkin P.I. Formoobrazovatel'nye protsessy v populyatsiyakh triticale [Natural selection in triticale populations]. Novosibirsk, 2008 (in Russ.).
  9. Khotyljova L.V., Kaminskaya L.N., Koren L.V. Influence of genetic systems of VRN- and PPD genes on the ecological adaptation of wheat and Triticale. Biologija, 2002, 4: 45-48.
  10. Liu W., Maurer H.P., Li G., Tucker M.R., Gowda M., Weissmann E.A., Hahn V., Würschum T. Genetic architecture of winter hardiness and frost tolerance in Triticale. PLoS ONE, 2014, 9(6): e99848 CrossRef
  11. Goryanina T.A. Dostizheniya nauki i tekhniki APK, 2011, 12: 30-32 (in Russ.).
  12. Krupin P.Yu., Divashuk M.G., Khomyakova O.V., D'yachuk T.I., Karlov G.I. Izvestiya TSKHA, 2009, 3: 74-80 (in Russ.).
  13. Adonina I.G., Orlovskaya O.A., Tereshchenko O.YU., Koren' L.V., Khotyleva L.V., Shumnyi V.K., Salina E.A. Genetika, 2011, 47(4): 516-526 (in Russ.).
  14. Zasorina E.V., Gorchin S.A., Golikova I.A. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2013, 6: 66-68 (in Russ.).
  15. Khomyakova O.V. Agrarnyi vestnik Yugo-Vostoka, 2010, 1(4): 18-21 (in Russ.).
  16. Silkova O.G., Loginova D.B., Ivanova (Kabanenko) Yu.N., Bondarevich E.B., Solovei L.A., Shtyk T.I., Dubovets N.I. Vavilovskii zhurnal genetiki i selektsii, 2014, 18(4/1): 630-642 (in Russ.).
  17. Sokol N.V., Donchenko L.V., Khramova N.S., Kovtunenko V.Ya., Grishchenko S.A. Izvestiya vysshikh uchebnykh zavedenii. Pishchevaya tekhnologiya, 2006, 1(290): 38-39 (in Russ.).
  18. Bazhenov M.S., Divashuk M.G., Pyl'nev V.V., Karlov G.I., Rubets V.S. Izvestiya TSKHA, 2011, 2: 20-26 (in Russ.).
  19. Khudenko M.A. Sravnitel'naya kharakteristika obraztsov yarovoi tritikale kollektsii VIR v usloviyakh Krasnoyarskoi lesostepi. Kandidatskaya dissertatsiya [Comparative characteristics of spring triticale samples of the VIR collection in the conditions of the Krasnoyarsk forest-steppe. PhD Thesis]. Krasnoyarsk, 2014 (in Russ.).
  20. Kurkiev K.U. Genetika, 2008, 44(9): 1238-1245 (in Russ.).
  21. Shishkina A.A., Dedkova O.S. Materialy Mezhdunarodnoi nauchnoi shkoly-konferentsii molodykh uchenykh «Genetika i selektsiya rastenii, osnovannaya na sovremennykh geneticheskikh znaniyakh i tekhnologiyakh» [Proc. Int. scientific school-conference of young scientists «Genetics and plant breeding based on modern genetic knowledge and technologies»]. Zvenigorod, 2008: 78 (in Russ.).
  22. Kaminskaya L.N., Koren' L.V., Leonova I.N., Adonina I.G., Khotyleva L.V., Salina E.A. Vestnik VOGiS, 2005, 9(4): 481-489 (in Russ.).
  23. Petr J., Hradecká D.H. Peculiarities of the growth and development of triticale in comparison with wheat and rye. Czech Journal of Genetics and Plant Breeding,2005, 41 (Special Issue): 213.
  24. Alheit K.V., Maurer H.P., Reif J.C., Tucker M.R., Hahn V., Weissmann E.A., Würschum T. Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (× Triticosecale Wittmack). BMC Genomics, 2012, 13(1): 235 CrossRef
  25. Maistrenko O.I. V sbornike: Ontogenetika vysshikh rastenii [Ontogenetics of higher plants]. Kishinev, 1992: 98-114 (in Russ.).
  26. Worland A.J.The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89(1): 49-57 CrossRef
  27. Yoshida T., Nishida H., Zhu J., Nitcher R., Distelfeld A., Akashi Y., Kato K., Dubcovsky J.Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theoretical and Applied Genetics, 2010, 120(3): 543-552 CrossRef
  28. Kippes N., Zhu J., Chen A., Vanzetti L., Lukaszewski A., Nishida H., Kato K., Dvorak J., Dubcovsky J. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Molecular Genetics and Genomics, 2014, 289(1): 47-62 CrossRef
  29. Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Dubcovsky J.The wheat and barley vernalization gene Vrn-3 is an orthologue of FT. Proceedings of the National Academy of Sciences, 2006, 103(51): 19581-19586 CrossRef
  30. Plaschke J., Börner A., Xie D.X., Koebner R.M.D., Schlegel R., Gale M.D. RFLP mapping of genes affecting plant height and growth habit in rye. Theoretical and Applied Genetics, 1993, 85(8): 1049-1054 CrossRef
  31. Pugsley A.T. Additional genes inhibiting winter habit in wheat. Euphytica, 1972, 21(3): 547-552 CrossRef
  32. Fait V.I., Gubich E.Yu., Zelenina G.A. Razlichiya sortov dvuruchek myagkoi pshenitsy po genam Vrn-1 tipa razvitiya. Plant Varieties Studying and Protection, 2018, 14(2): 160-169 CrossRef (in Russ.).
  33. Filobok V.A., Guenkova E.A., Bespalova L.A., Koshkin V.A., Potokina E.K. Zernovoe khozyaistvo Rossii, 2016, 1: 38-42 (in Russ.).
  34. Zhang X.K., Xiao Y.G., Zhang Y., Xia X.C., Dubcovsky J., He Z.H.Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Science, 2008, 48(2): 458-470 CrossRef
  35. Sun Q.-M., Zhou R.-H., Gao L.-F., Zhao G.-Y., Jia J.-Z. The characterization and geographical distribution of the genes responsible for vernalization requirement in Chinese bread wheat. Journal of Integrative Plant Biology, 2009, 51(4): 423-432 CrossRef
  36. Zhang J., Wang Y., Wu S., Yang J., Liu H., Zhou Y. A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theoretical and Applied Genetics, 2012, 125(8): 1697-1704 CrossRef
  37. Rigin B.V., Zveinek S.N., Bulavka N.V. Agrarnyi nauchnyi zhurnal, 1985, 427: 38 (in Russ.).
  38. Bespalova L.A., Koshkin V.A., Potokina E.K., Filobok V.A., Matvienko I.I., Mitrofanova O.P., Guenkova E.A. Photoperiod sensitivity and molecular marking of genes Ppd and Vrn in connection with breeding alternative-habit wheat varieties. Russian Agricultural Sciences, 2010, 36(6): 389-392 CrossRef
  39. Wang L., Niu J.S., Li Q.Y., Qin Z., Ni Y.J., Xu H.X. Allelic variance at the vernalization gene locus Vrn-D1 in a group of sister wheat (Triticum aestivum) lines and its effects on development. The Journal of Agricultural Science, 2015, 153(4): 588-601 CrossRef
  40. Goncharov N.P. Sravnitel'naya genetika pshenits i ikh sorodichei [Comparative genetics of wheats and their relatives]. Novosibirsk, 2002 (in Russ.).
  41. Košner J., Pánková K. Chromosome substitutions with dominant loci Vrn-1 and their effect on developmental stages of wheat. Czech Journal of Genetics and Plant Breeding, 2004, 40(2): 37-44.
  42. Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theoretical and Applied Genetics, 2004, 109(8): 1677-1686 CrossRef
  43. Fu D., Szücs P., Yan L., Helguera M., Skinner J.S., von Zitzewitz J., Hayes P.M., Dubcovsky J.Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics, 2005, 273(1): 54-65 CrossRef
  44. Golovnina K.A., Kondratenko E.Ya., Blinov A.G., Goncharov N.P. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biology, 2010, 10(1): 168 CrossRef
  45. Dubcovsky J., Loukoianov A., Fu D., Valarik M., Sanchez A., Yan L. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Molecular Biology, 2006, 60(4): 469-480 CrossRef
  46. Muterko A., Kalendar R., Salina E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biology, 2016, 16(Suppl.): Article number 9 CrossRef
  47. Muterko A.F., Salina E.A. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(3): 323-333 CrossRef (in Russ.).
  48. Santra D.K., Santra M., Allan R.E., Campbell K.G., Kidwell K.K. Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the U.S.A. Plant Breeding, 2009, 128(6): 576-584 CrossRef
  49. Shcherban A.B., Efremova T.T., Salina E.A. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Molecular Breeding, 2012, 29(3): 675-685 CrossRef
  50. Milec Z., Tomková L., Sumíková T., Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Molecular Breeding, 2012, 30(1): 317-323 CrossRef
  51. Chu C.-G., Tan C.T., Yu G.-T, Zhong S., Xu S.S., Yan L. A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3: Genes, Genomes, Genetics, 2011, 1(7): 637-645 CrossRef
  52. Zhang X., Gao M., Wang S., Chen F., Cui D. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front. Plant Sci., 2015, 6: 470 CrossRef
  53. Takumi S., Koyama K., Fujiwara K., Kobayashi F. Identification of a large deletion in the first intron of the Vrn-D1 locus, associated with loss of vernalization requirement in wild wheat progenitor Aegilops tauschii Coss. Genes & Genetic Systems, 2011, 86(3): 183-195 CrossRef
  54. Muterko A., Balashova I., Cockram J., Kalendar R., Sivolap Y. The new wheat vernalization response allele Vrn-D1s is caused by DNA transposon insertion in the first intron. Plant Mol. Biol. Rep., 2015, 33(2): 294-303 CrossRef
  55. Muterko A.F. Analiz polimorfizma genov VRN i PPD u tetraploidnykh i geksaploidnykh vidov roda Triticum L. Avtoreferat kandidatskoi dissertatsii [Analysis of VRN and PPD genes polymorphism in tetraploid and hexaploid species of the genus Triticum L. PhD Thesis]. Novosibirsk, 2017 (in Russ.).
  56. Kippes N., Debernardi J.M., Vasquez-Gross H.A., Akpinar B.A., Budak H., Kato K., Chao S., Akhunov E., Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proceedings of the National Academy of Sciences, 2015, 112(39): E5401-E5410 CrossRef
  57. Chen F., Gao M., Zhang J., Zuo A., Shang X., Cui D. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biology, 2013, 13: 199 CrossRef
  58. Nowak M., Leśniowska-Nowak J., Zapalska M., Banaszak Z., Kondracka K., Dudziak K., Kowalczyk K. Analysis of VRN1 gene in triticale and common wheat genetic background. Scientia Agricola, 2014, 71(5): 345-355 CrossRef
  59. Zaitseva O.I., Lemesh V.A. Genetika, 2015, 51(7): 766-774 CrossRef (in Russ.).
  60. Shcherban A.B., Emtseva M.V., Efremova T.T. Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions. Cereal Research Communications, 2012, 40(3): 351-361 CrossRef
  61. Shcherban A.B., Börner A., Salina E.A. Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breeding, 2015, 134(1): 49-55 CrossRef
  62. Milec Z., Sumíková T., Tomková L., Pánková K. Distribution of different Vrn-B1 alleles in hexaploid spring wheat germplasm. Euphytica, 2013, 192(3): 371-378 CrossRef
  63. Likhenko I.E., Stasyuk A.I., Shcherban' A.B., Zyryanova A.F., Likhenko N.I., Salina E.A. Vavilovskii zhurnal genetiki i selektsii, 2014, 18(4/1): 691-703 (in Russ.).
  64. Diaz A., Zikhali M., Turner A.S., Isaac P., Laurie D.A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE, 2012, 7(3): e33234 CrossRef
  65. Stelmakh A.F. Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica, 1993, 65(1): 53-60 CrossRef
  66. Iqbal M., Navabi A., Yang R.-C., Salmon D.F., Spaner D. The effect of vernalization genes on earliness and related agronomic traits of spring wheat in northern growing regions. Crop Science, 2007, 47(3): 1031-1039 CrossRef
  67. Ukalska J., Kociuba W. Phenotypical diversity of winter triticale genotypes collected in the Polish gene bank between 1982 and 2008 with regard to major quantitative traits. Field Crops Research, 2013, 149: 203-212 CrossRef
  68. Voronin A.N., Stel'makh A.F. Nauchno-tekhnicheskii byulleten' VSGI, 1985, 55: 19-23 (in Russ.).
  69. Tishchenko V.N., Chekalin N.M., Panchenko I.A., Usova Z.V. Prodolzhitel'nost' vegetatsionnogo i mezhfaznykh periodov i ikh korrelyatsii s urozhainost'yu v zavisimosti ot uslovii goda i genotipa ozimoi myagkoi pshenitsy [The duration of vegetation and interphase periods and their correlation with productivity depending on a year conditions and winter common wheat genotype]. Available: http://agromage.com/stat_id.php?id=409. Accessed: 7.10.2019 (in Russ.).
  70. Würschum T., Liu W., Alheit K.V., Tucker M.R., Gowda M., Weissmann E.A., Hahn V., Maurer H.P. Adult plant development in triticale (´ Triticosecale Wittmack) is controlled by dynamic genetic patterns of regulation. G3: Genes, Genomes, Genetics, 2014, 4(9): 1585-1591 CrossRef
  71. Zhmurko V.V., Avksent'eva O.A., Zubrich A.I., Yukhno Yu.Yu., Petrenko V.A., Popova Yu.V., Samoilov A.M., Khan' Bin. Buletinul Academiei de Ştiinţe a Moldovei, 2011, 3(315): 72-79 (in Russ.).
  72. Zhmurko V.V., Avksent'eva O.A., Khan' Bin. Fiziologiya rastenii i genetika, 2013, 45(5): 408-416 (in Russ.).
  73. Koren' L.V., Khotyleva L.V. Vestnik fonda fundamental'nykh issledovanii, 2010, 4(54): 116-124 (in Russ.).
  74. Stepochkin P.I. Study and utilization of spontaneous spring mutations of wheat, rye and triticale in Siberia. Proc. 14th Int. EWAC Conf. A. Börner, J.W. Snape (eds.). Istanbul, Turkey, 2007: 148-154.
  75. Stepochkin P.I., Artemova G.V. Vestnik VOGiS, 2008, 12(4): 710-716 (in Russ.).
  76. Oliver S.N., Finnegan E.J., Dennis E.S., Peacock W.J., Trevaskis B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proceedings of the National Academy of Sciences, 2009, 106(20): 8386-8391 CrossRef
  77. Li X., Liu Y. The conversion of spring wheat into winter wheat and vice versa: false claim or Lamarckian inheritance? Journal of Biosciences, 2010, 35(2): 321-325 CrossRef
  78. Loukoianov A., Yan L., Blechl A., Sanchez A., Dubcovsky J. Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiology, 2005, 138(4): 2364-2373 CrossRef
  79. Medvedev A.M., Poma N.G., Osipov V.V., Zhikharev S.D. Zernobobovye i krupyanye kul'tury, 2017, 3(23): 50-58 (in Russ.).
  80. Popolzukhina N.A., Popolzukhin P.V., Yakunina N.A., Suponin M.S. Materialy Mezhdunarodnogo kongressa «Biotekhnologiya: sostoyanie i perspektivy razvitiya» [Proc. Int. Cong. «Biotechnology: current state and prospects». Vol. 2]. Moscow, 2017, tom. 2: 97-100 (in Russ.).
  81. Krotova L.A. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2010, 2(64): 28-31(in Russ.).
  82. Leonova I.N., Dobrovolskaya O.B., Kaminskaya L.N., Adonina I.G., Koren L.V., Khotyljova L.V., Salina E.A. Molecular analysis of the triticale lines with different Vrn gene systems using microsatellite markers and hybridization in situ. Russian Journal of Genetics, 2005, 41(9): 1014-1020 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)