doi: 10.15389/agrobiology.2019.1.149eng

UDC 633.18:581.1:581.134



M.A. Skazhennik, N.V. Vorobyov, A.Kh. Sheudzen, V.S. Kovalyov,
I.V. Balyasny

All-Russian Rice Research Institute, 3, Belozernii, Krasnodar, Russia 350921, e-mail (✉ corresponding author),,,,

Skazhennik M.A.
Kovalyov V.S.
Vorobyov N.V.
Balyasny I.V.
Sheudzen A.Kh.

Received December 25, 2017


Lodging is one of the main causes of rice crop loss due to adverse effects on photosynthesis and plant productivity. Plant bend hinders illumination and makes it difficult for the plastic substances to flow out of the stem and leaves to the panicle. This worsens grain filling, technological and sowing qualities. Lodging restricts potential productivity of rice varieties. The resistance of a variety to lodging depends on its genotype, the strength of the stem tissues, and the growing conditions. Insufficient stability of rice plant stems occurs when the crops are thickened or subjected to high nitrogen supply, deep water in the rice field, increasing dynamic loads due to sprouting, wind, rain, dew and diseases. The objective of this study was to determine morphophysiological traits causing resistance to lodging of rice (Oryza sativa L.) intensive and extensive varieties with a focus on th use of laboratory method for express estimates of lodging resistance. The studied Russian rice varieties were Rapan, Vizit, Gamma of intensive type and Sonata and Atlant of extensive type. Plants grew in concrete micro-check plots filled with soil from rice check plots in which rice irrigation mode was the same as in field conditions. The fertilizers, as ammonium sulphate, superphosphate and potassium chloride, were applied at N24P12K12 and N36P18K18 dosages. The study showed that during tillering to booting of intensive varieties Rapan, Vizit, Gamma, photosynthesis assimilates are more used for the formation of generative organs and less vegetative, resulting in high productivity of panicle, but less lodging resistance. Varieties of extensive types, Sonata and Atlant, during tillering—booting period use more for stem formation and less for panicle productivity elements formation. This leads to a decrease in panicle productivity and yield, while the resistance of sowings to lodging increases due to higher strength of the lower internodes. To quantitate lodging resistance of rice varieties, we measured mechanical resistance of lower part of stem, including the first and the second culm internode, to bend. This index averages 56-63 g for the intensive varieties, 66-80 g for extensive varieties 66-80 g, and correlates with lodging rate of tested genotypes under field conditions at r = -0.99 (p ≤ 0.050). The increase in cellulose content per unit stem length and lower internodes resistance are the main traits for reducing the lodging of rice plants.

Keywords: Oryza sativa L., rice, intensive varieties, extensive varieties, panicle productivity, lodging resistance, cellulose, bending resistance, yield.




  1. USDA. Economic Research Service. Available No date.
  2. Avakyan K.M., Agarkov V.D., Alekseenko E.V., Andrusenko V.V., Bondareva T.N., Bochko T.F., Vorob'v V.I., Vorob'v N.V., Gromyko E.V., Garkusha S.V., Gospodinova V.I., Zelenskii G.L., Zinnik A.N., Kas'yanov A.I., Kovalev V.S., Kremzin N.M., Ladatko A.G., Malysheva N.N., Myrzin A.S., Parashchenko V.N., Popov V.A., Sapelkin V.K., Skazhennik M.A., Sorochinskaya E.M., Trubilin A.I., Tuman'yan N.G., Udzhukhu A.Ch., Kharitonov E.M., Chebatarev M.I., Sheudzhen A.Kh., Shilovskii V.N. Sistema risovodstva Krasnodarskogo kraya [Rice farming system in Krasnodar region]. Krasnodar, 2011 (in Russ.).
  3. Kharitonov E.M., Tuman'yan N.G. Dostizheniya nauki i tekhniki APK, 2010, 11: 14-15 (in Russ.).
  4. Chakraborty D., Ladha J.K., Rana D.S., Jat M.L., Gathala M.K., Yadav S., Rao A.N., Ramesha M.S., Raman A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep., 2017, 7(1): 9342 CrossRef
  5. Stuecker M.F., Tigchelaar M., Kantar M.B. Climate variability impacts on rice production in the Philippines. PLoS ONE, 2018; 13(8): e0201426 CrossRef
  6. Wenzel G. Wissensbasiert zu optimaler qualitativer und quantitativer Anpassung der Grundnahrung smittelproduktion. «Gemeinsames Symposium der Deutschen Akademie der Naturforscher leopoldina und der osterreichischen Akademie der Wissenschaften. Wien. 30-31 Okt., 2008». Nova acta Leopoldina, 2010, 108(374): 69-89.
  7. Zhou X., Bai X., Xing Y. A rice genetic improvement boom by Next Generation Sequencing. Curr. Issues Mol. Biol., 2018, 27: 109-126 CrossRef
  8. Tang S., Ding L., Bonjean A.P. Rice production and genetic improvement in China. Cereals in China, 2010, 36: 15.
  9. Gu M.H. Discussion on the aspects of high-yielding breeding in rice. Acta Agronomica Sinica, 2010, 36: 1431-1439.
  10. Peng S.B., Khus G.S., Virk P., Tang Q.Y., Zou Y.B. Progress in ideotype breeding to increase rise yield potential. Field Crop. Res., 2008, 108(1): 32-38 CrossRef
  11. Zhang Y.B., Tang Q.Y., Zou Y.B., Li D.Q., Qin J,Q., Yang S.H., Chen L., Xia B., Peng S. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crop. Res., 2009, 114: 91-98 CrossRef
  12. Zhang W.J., Li G.H., Yang Y.M., Li Q., Zhang J., Liu J.Y., Wang S., Tang S., Ding Y.F. Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. Journal of Integrative Agriculture, 2014, 13(1): 63-72 CrossRef
  13. Hirano K., Ordonio R.L., Matsuoka M. Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2017, 93(4): 220-233 CrossRef
  14. Zelenskii G.L. Risovodstvo, 2009, 14: 45-50 (in Russ.).
  15. Zelenskii G.L. Ris: biologicheskie osnovy selektsii i agrotekhniki [Rice: biological foundations of breeding and agrotechnics]. Krasnodar, 2016 (in Russ.).
  16. Pham Q.D., Akira A., Hirano M., Sagawa S., Kuroda E. Analysis of lodging resistant characteristics of different rice genotypes grown under the standard and nitrogen-free basal dressing accompanied with sparse planting density practices. Plant Prod. Sci., 2004, 7: 243-251 CrossRef
  17. Kashiwagi T., Sasaki H., Ishimaru K., Factors responsible for decreasing sturdiness of the lower part in lodging of rice (Oryza sativa L.). Plant Prod. Sci., 2005, 8(2): 166-172 CrossRef
  18. Kono M. Physiological aspects of lodging. In: Since of the rice. T. Matsuo, K. Kumazawa, R. Ishii, K. Ishihara, H. Hirata (eds.). Food and Agriculture policy research Center, Tokyo, 1995. 2: 971-982.
  19. Islam M.S., Peng S., Visperas R.M., Ereful N., Bhuiya M.S.U., Julfiguar A.W. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. FieldCrop. Res., 2007, 101: 240-248 CrossRef
  20. Bespalova L.A., Kudryashov I.N., Kolesnikov F.A., Novikov A.V., Puzyrnaya O.YU., Gritsai T.I., Nabokov G.D., Borovik A.N., Kerimov V.R. Zemledelie, 2014, 3: 9-12 (in Russ.).
  21. Kovtun V.I., Kovtun L.N. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2014, 4: 262-263 (in Russ.).
  22. Kuroda E., Ookawa T., Ishihara K. Analysis on difference of dry matter production between rice cultivars with different plant height in relation to gas diffusion inside stands. Jpn. J. Crop Sci., 1989, 58(3): 374-382 CrossRef
  23. Gent M.P.N. Canopy light interception, gas exchange, and biomass in reduced height isolines of winter wheat. Crop Sci., 1995, 35: 1636-1642 CrossRef
  24. Berry P.M., Sylvester-Bradley R., Bery S. Ideotype design for lodging-proof wheat. Euphytica, 2007, 154: 165-179 CrossRef
  25. Berry P.M., Kendall S., Rutherford Z., Griffiths S. Historical analysis of the effects of breeding on the height of winter wheat (Triticum aestivum) and consequences for lodging. Euphytica, 2015, 203: 375-383 CrossRef
  26. Sinniah U.R., Wahyuni S., Syahputra B., Surya A., Gantait S. A potential retardant for lodging resistance in direct seeded rice (Oryza sativa L.). Can. J. Plant Sci., 2012, 92, 1: 13-17 CrossRef
  27. Huber H., Brouwer J., Wettberg E.J., During H.J., Anten N.P. More cells, bigger cell or simply reorganization? Alternative Mechanisms leading to changed internode architecture under contrasting stress regimes. New Phytol., 2013, 201: 193-204 CrossRef
  28. Cui H.Y., Jin L.B., Li B., Zhang J.W., Zhao B., Dong S.T., Liu P. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Sci. Agric. Sin., 2012, 45: 3497-3505.
  29. Fu X.Q., Feng J., Yu B., Gao Y.J., Zheng Y.L., Yue B. Morphological, biochemical and genetic analysis of a brittle stalk mutant of maize inserted by mutator. Journal of Integrative Agriculture, 2013, 12: 12-18 CrossRef
  30. Zheng T., Chen Y., Pan G.Q., Li J.G., Li C.S., Rong X.J., Li G.R., Yang W.Y., Guo X. Effects of plant and row allocation on population light environment and lodging resistance of strip sown wheat in drill. Sci. Agric. Sin., 2013, 46: 1571-1582.
  31. Kong E., Liu D., Guo X., Yang W., Sun J., Li X., Zhan K., Cui D., Lin J., Zhang A. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J., 2013, 1: 43-49 CrossRef
  32. Duan C.R., Wang B.H., Wang P.Q., Wang D.H., Cai S.X. Relationship between the minute structure and the lodging resistance of rice stems. Colloids and Surfaces B: Biointerfaces, 2004, 35: 155-158 CrossRef
  33. Kelbert A., Spaner D., Briggs K. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004, 136: 211-221 CrossRef
  34. Ponomareva M.L., Ponomarev S.N. Morphometric parameters of stem as criteria for estimation of resistance of winter rye to lodging in the conditions of Middle Povolzh’e. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2004, 3: 90-94 (in Russ.).
  35. Konovalov A.A., Shundrina I.K., Mamatyuk V.I., Goncharov N.P. Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2013, 5: 3-6 (in Russ.).
  36. Yang S.M., Xie L., Zheng S.L., Li J., Yuan J.C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agronomica Sinica, 2009, 35: 93-103 CrossRef
  37. Guo J., Hu X., Gao L., Xie K., Ling N., Shen Q., Hu S., Guo S. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Sci. Rep., 2017, 7: 2101 CrossRef
  38. Wang C.Y., Dai X.L., Shi Y.H., Wang Z.L., Chen X.G., He M.R. Effects of nitrogen application rate and plant density on lodging resistance in winter wheat. Acta Agronomica Sinica, 2012, 38(1): 121-128 CrossRef
  39. Zhang J., Li G.H., Song Y.P., Zhang W.J., Yang C.D., Wang S.H., Ding Y.F. Lodging resistance of super-hybrid rice Y Liangyou 2 in two ecological regions. Acta Agronomica Sinica, 2013, 39: 682-692 CrossRef
  40. Li G.H., Zhong X.H., Tian K., Huang N.R., Pan J.F., He T.N. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Sci. Agric. Sin., 2013, 46: 1323-1334.
  41. Duktov V.P., Duktova N.A. Agrokhimicheskii vestnik, 2015, 4: 13-16 (in Russ.).
  42. Shi Y.J., Huang Y.L., Shen G.L., Wang W.G., Zhang Z.Z., Shi Y.Y., Chen D.P. Effect of nitrogen application rate and planting density on mechanic characteristics of rice culms. Chin. Agric. Sci. Bull., 2008, 24: 101-106.
  43. Zhang W., Wu L., Ding Y., Yao X., Wu X., Weng F., Li G., Liu Z., Tang S., Ding C., Wang S. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). Journal of Plant Research, 2017, 130(5): 859-871 CrossRef
  44. Zhang W., Wu L., Wu X., Ding Y., Li G., Li J., Weng F., Liu Z., Tang S., Ding C., Wang S. Lodging resistance of Japonica rice (Oryza sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice (N Y), 2016; 9: 31 CrossRef
  45. Yadav S., Singh U.M., Naik S.M., Venkateshwarlu C., Ramayya P.J., Raman K.A., Sandhu N., Kumar A. Molecular mapping of QTLs associated with lodging resistance in dry direct-seeded rice (Oryza sativa L.). Front. PlantSci., 2017, 8: 1431 CrossRef
  46. Sowadan O., Li D., Zhang Y., Zhu S., Hu X., Bhanbhro LB., Edzesi WM., Dang X., Hong D. Mining of favorable alleles for lodging resistance traits in rice (Oryza sativa) through association mapping. Planta, 2018, 248(1): 155-169 CrossRef
  47. Sheudzhen A.Kh., Bondareva T.N. Agrokhimiya. Ch. 2. Metodika agrokhimicheskikh issledovanii [Agrochemistry. Part 2. Methods of agrochemical research]. Krasnodar, 2015 (in Russ.).
  48. Skazhennik M.A., Vorob'ev N.V., Doseeva O.A. Metody fiziologicheskikh issledovanii v risovodstve [Methods of physiological research of rice]. Krasnodar, 2009 (in Russ.).
  49. Dzyuba V.A. Mnogofaktornye opyty i metody biometricheskogo analiza eksperimental'nykh dannykh [Multifactorial experiments and methods of biometric analysis of experimental data]. Krasnodar, 2007 (in Russ.).
  50. Lyakhovkin A.G. Ris. Mirovoe proizvodstvo i genofond [Rice. World production and gene pool].St. Petersburg, 2005 (in Russ.).
  51. Wu L., Zhang W., Ding Y., Zhang J., Cambula E.D., Weng F., Liu Z., Ding C., Tang S., Chen L., Wang S., Li G. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in Japonica rice (Oryza sativa L.). Front. Plant Sci., 2017, 8: 881 CrossRef
  52. Vorob'ev N.V., Skazhennik M.A., Kovalev V.S. Produktsionnyi protsess u sortov risa [Production process in rice varieties]. Krasnodar, 2011 (in Russ.).
  53. Kolomeichenko V.V., Bedenko V.P. Vestnik OrelGAU, 2008, 4: 17-21 (in Russ.).






Full article PDF (Rus)

Full article PDF (Eng)