doi: 10.15389/agrobiology.2019.1.47eng

UDC 631.872:631.427.22:574.472

The authors thank A.Yu. Kolodyazhny, Yu.P. Moskalevskaya and N.V. Patyka (Ukraine) for their assistance in the experiment 2.
Experiments have been carried out on the equipment of ARRIAM Center for genomic technologies, proteomics and cell biotechnology.
Supported financially by Russian Science Foundation (grant № 18-16-00073)



O.V. Orlova1, E.L. Chirak1, N.I. Vorob’ev1, O.V. Sviridova1, T.O. Lisina1, E.E. Andronov1, 2, 3

1All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail (✉ corresponding author),,,,,;
2Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 Russia;
3Dokuchaev Soil Science Institute, 7/2, Pyzhyovskiy per., Moscow, 397463 Russia

Orlova O.V.
Sviridova O.V.
Chirak E.L.
Lisina T.O.
Vorob’ev N.I.
Andronov E.E.

Received October 8, 2018


The modern concept of the reproduction of soil organic matter (SOM) requires the sequestration of the carbon of plant residues in the soil by the formation of stable organic compounds. In this regard. the role of microbial preparations, accelerating the decomposition of straw are important. Learning the taxonomic structure of the microbial community in these processes is of great importance and not well understood. Microbial communities of arable soddy-podzolic soils decomposing straw of grain crops were studied in field and laboratory experiments. Straw (rye, wheat and oat) were crushed and inoculated with the Barkon preparation (complex association of microorganisms developed at the FGBNU ARRIAM). The functioning of the microbial community was assessed by the number and activity of microorganisms, the agrochemical properties of the soil. The composition of bacterial community of soils was determined by high-performance sequencing of 16s rRNA gene libraries. The rate of decomposition of straw was controlled by the ratio C:N in it: rye straw < wheat < oat. Barkon increased rate of decomposition of straw by 18-42 % compared to soil microflora by 3 months of composting. Biopreparation is more effective when straw is incorporation in the 0-5 cm layer than by 9-12 cm. The effect of the Barkon on the number, biomass of microorganisms, and their respiration was not noticeable as compared with the growth of these parameters when introducing straw. The absence of an increase in carbon dioxide emissions with an increase in the rate of straw decomposition when Barkon is introduced, indicates an intensification of the processes of carbon sequestration in soil. The treatment with a biological preparation promotes the formation of microbial destructive communities with the highest efficiency of straw conversion and its conversion into labile organic compounds, and then into soil humus substances. Therefore, the use of Barkon, compared to the uninoculated straw, increased the content of total carbons in the soil by 4.8 to 8.4 %. All studied factors (soil, straw, biological preparation, depth and time of decomposition) influence on the composition of microbial communities leading decomposition, the most significant of which is the type of soil. This confirms the high response of the composition of the microbial community to various factors while maintaining the crustal component of the microbiome characteristic of this soil. In the more acid soddy-podzolic soils, at the same humus content, in the taxon Acidobacteria, group 1 and group 2 prevailed, while in the soils with a neutral pH, group 6 predominated. The indicator of straw application for sod-podzolic soil in all experiments is the increase of Actinobacteria from the family Micrococcaceae, particularly in variants with straw inoculation with Barkon, since Micrococcaceae is one of the microbial components of this biopreparation. Detected the influence of adding straw and application of the Barkon on the taxonomic composition of the bacterial community and the configuration of the destructive biosystem of soil microorganisms tuned for humification of plant residues. The decomposition of straw in the soil, as compared to that which was not planted, showed some weakening of Barkon's effect on the formation of the humification trophic chain, as evidenced by the lack of growth of labile humic substances in the respective variants. Based on the extended taxonomic data on the composition of the soil microbial community, it was found that minor groups of microorganisms participate equally with major groups, forming network fractal structures.

Keywords: microbial community, straw, a microbiological preparations, Barkon, the index of fractal structures.




  1. Fageria N.K. Role of soil organic matter in maintaining sustainability of cropping systems. Commun. Soil Sci. Plant, 2012, 43(16): 2063-2113 CrossRef
  2. Ispol'zovanie solomy kak organicheskogo udobreniya /Pod redaktsiei E.N. Mishustina [Using straw as organic fertilizer]. Moscow, 1980 (in Russ.).   
  3. Mahmoodabadi M., Heydarpour E. Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. InternationalAgrophysics, 2014, 28(2): 169-176 CrossRef
  4. Golubev I.G., Shvanskaya I.A., Konovalenko L.Yu., Lopatnikov M.V. Retsikling otkhodov v APK: spravochnik[Waste recycling in agricultural sector: a handbook]. Moscow, 2011 (in Russ.).     
  5. Surekha K., Reddy K.P.C., Kumari A. P.P., Sta Cruz P.C. Effect of straw on yield components of rice (Oryza sativa L.) under rice-rice cropping system. J. Agron. Crop Sci., 2006, 192(2): 92-101 CrossRef
  6. Rusakova I.V., Vorob'ev N.I. Dostizheniya nauki i tekhniki APK, 2011, 08: 25-28 (in Russ.).     
  7. Zhang P., Wei T., Jia Z., Han Q., Ren X., Li Y. Effects of straw incorporation on soil organic matter and soil water-stable aggregates content in semiarid regions of Northwest China. PloS ONE, 2014, 9(3): e92839 CrossRef
  8. Li P., Zhang D. D., Wang X. J., Wang X., Cui Z. Survival and performance of two cellulose-degrading microbial systems inoculated into wheat straw-amended soil. J.Microbiol. Biotechn., 2012, 22(1): 126-132 CrossRef
  9. Shershneva O.M., Tarasov S.A. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2014, 6: 41-45 (in Russ.).     
  10. Pfender W.F., Fieland V.P., Ganio L.M., Seidler R.J. Microbial community structure and activity in wheat straw after inoculation with biological control organisms. Applied Soil Ecology, 1996, 3(1): 69-78 CrossRef
  11. Semenov V.M., Ivannikova L.A., Tulina A.S. Agrokhimiya, 2009, 10: 77-96 (in Russ.)
  12. Hatfield J.L., Walthall C.L. Soil biological fertility: Foundation for the next revolution in agriculture? Commun. Soil Sci. Plant., 2015, 46(6): 753-762 CrossRef
  13. Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci., 2003, 54(4): 655-670 CrossRef
  14. McGuire K.L., Treseder K.K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biology and Biochemistry, 2010, 42(4): 529-535 CrossRef
  15. Young I.M., Crawford J.W. Interactions and self-organization in the soil-microbe complex. Science, 2004, 304(5677): 1634-1637 CrossRef
  16. Crawford J.W., Deacon L., Grinev D., Harris J.A., Ritz K., Singh B.K., Young I. Microbial diversity affects self-organization of the soil-microbe system with consequences for function. Journal of the Royal Society Interface, 2012, 9(71): 1302-1310 CrossRef
  17. Marschner P., Kandeler, E., Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35(3): 453-461 CrossRef
  18. Wickings K., Grandy S., Reed S., Johnson N. The origin of litter chemical complexity during decomposition. Ecology Letters, 2012, 15(10): 1180-1188 CrossRef
  19. Sonnleitner R., Lorbeer E., Schinner F. Effects of straw, vegetable oil and whey on physical and microbiological properties of a chernozem. Applied Soil Ecology, 2003, 22(3): 195-204 CrossRef
  20. Tenney F.G., Waksman S.A. Composition of natural organic materials and their decomposition in the soil: IV. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Sci., 1929, 28(1): 55-84.
  21. Tikhonovich I.A., Kozhemyakov A.P., Chebotar' V.K., Kruglov Yu.V., Kandybin N.V., Laptev G.Yu. Biopreparaty v sel'skom khozyaistve (Metodologiya i praktika primeneniya mikroorganizmov v rastenievodstve i kormoproizvodstve ) [Biological products in agriculture (Methodology and practice of using microorganisms in crop production and feed production)]. Moscow, 2005 (in Russ.).
  22. Biktasheva L.R., Belonogova N.V., Selivanovskaya S.Yu., Galitskaya P.Yu. Uchebnye zapiski Kazanskogo universiteta. Seriya estestvennye nauki, 2016, 158(4): 493-506 (in Russ.).
  23. Sviridova O.V., Vorobyov N.I., Provorov N.A., Orlova O.V., Rusakova I.V., Andronov E.E., Pishchik V.N., Popov A.A., Kruglov Yu.V. The alignment of soil’s conditions for plant’s development during microbial destruction of plant’s residues by microbial preparations. Agricultural Biology, 2016, 51(5): 664-672 CrossRef (in Engl.).
  24. Sviridova O.V., Mikhaleva L.V., Vorob'ev N.I., Kochetkov V.V. Mikologiyaifitopatologiya, 2001, 35(6): 38-47 (in Russ.).
  25. Orlova O.V., Andronov E.E., Vorobyov N.I., Kolodyazhnii A.Yu., Moskalevskaya Yu.P., Patyka N.V., Sviridova O.V.  Composition and functioning of microbial communities in the decomposition of straw cereals in sod podzolic soil. AgriculturalBiology, 2015, 50(3): 305-314 CrossRef (in Engl.).
  26. Agrokhimicheskie metody issledovaniya pochv /Pod redaktsiei A.V. Sokolova [Agrochemical methods of soil research. A.V. Sokolov (ed.)]. Moscow, 1975 (in Russ.).
  27. Spravochnik po analizu organicheskikh udobrenii /Pod redaktsiei A.I. Es'kova [Handbook of organic fertilizer analysis. A.I. Es'kov (ed.)]. Moscow, 2000 (in Russ.).
  28. Safonov A.P. V knige: Gumus i azot v zemledelii nechernozemnoi zony RSFSR [Humus and nitrogen in agriculture non-chernozem zone of the RSFSR]. Leningrad, 1987: 14-16 (in Russ.).
  29. Shul'ts E., Kershens M. Pochvovedenie, 1998, 7: 890-894 (in Russ.).
  30. Panikov N.S., Gorbenko A.Yu., Svetlov S.V. Sposob opredeleniya summarnogo soderzhaniya vodorastvorimykh organicheskikh veshchestv v pochve. Patent № 1318909 (SSSR) MKP G 01 N 33/24. MGU im. M.V. Lomonosova (SSSR). № 3949440/30-15. Zayavl. 06.09.85. Opubl.  23.06.87. Byul. № 23 [The method of determining the total content of water-soluble organic matter in the soil. Patent number 1318909 (USSR) MKP G 01 N 33/24. Moscow State University M.V. Lomonosov (USSR). No. 3949440/30-15. Claims 09/06/85. Publ. 06/23/87. Bul. No. 23] (in Russ.).
  31. West A.W., Sparling G.P. Modification to the substrate-induced respiration method to permit measurement of microbial biomass in soils of different water contents. J. Microbiol. Meth., 1986, 5(3-4): 177-189 CrossRef
  32. Blagodatskii S.A., Blagodatskaya E.V., Gorbenko A.Yu., Panikov N.S. Pochvovedenie, 1987, 4: 64-72 (in Russ.).
  33. Osnovnye mikrobiologicheskie i biokhimicheskie metody issledovaniya pochv: Metodicheskie ukazaniya [Main microbiological and biochemical methods of soil research: Methodical instructions]. Leningrad, 1987 (in Russ).
  34. Andronov E.E., Pinaev A.G., Pershina E.V., Chizhevskaya E.P. Nauchno-metodicheskie rekomendatsii po vydeleniyu vysokoochishchennykh preparatov DNK iz ob"ektov okruzhayushchei sredy. Metodicheskie ukazaniya [Scientific and methodological recommendations on the isolation of highly purified DNA preparations from environmental objects]. St. Petersburg, 2011 (in Russ.).
  35. Bates S.T.D., Berg-Lyons J.G., Caporaso W.A., Walters A. W., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 2010, 5: 908-917 CrossRef
  36. Caporaso J.G., Bittinger K., Bushman F.D., DeSantis T.Z., Andersen G.L., Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 2010, 26(2): 266-267 CrossRef
  37. Vorob'ev N.I., Sviridova O.V., Patyka N.V., Dumova V.A., Mazirov M.A., Kruglov Yu.V. Materialy Mezhdunarodnoi konferentsii «Biodiagnostika v ekologicheskoi otsenke pochv i sopredel'nykh sred» [Proc. Int. Conf. «Biodiagnostics in the environmental assessment of soils and adjacent environments»]. Moscow, 2013: 38 (in Russ.).
  38. Vorob'ev N.I., Provorov N.A., Sviridova O.V., Pishchik V.N., Semenov A.M., Nikonov I.N. Materialy Vserossiiskogo simpoziuma «Sovremennye problemy fiziologii, ekologii i biotekhnologii mikroorganizmov» /Pod redaktsiei A.I. Netrusova, N.N. Kolotilova [Proc. All-Russian symposium «Modern problems of physiology, ecology and biotechnology of microorganisms». A.I. Netrusov, N.N. Kolotilov (eds.)]. Moscow, 2014: 55 (in Russ.).  
  39. Vorob'ev N.I., Sviridova O.V., Kutuzova R.S. Metodicheskie rekomendatsii po ispol'zovaniyu graf- analiza v issledovaniyakh biosistem, sostoyashchikh iz bioticheskikh i abioticheskikh komponentov [Methodical instructions for the use of graph-analysis in studies of biosystems consisting of biotic and abiotic components]. St. Petersburg—Pushkin, 2006 (in Russ.).  
  40. Vorob'ev N.I., Provorov N.A., Pishchik V.N., Sviridova O.V. Programma dvukhfaktornogo dispersionnogo analiza biologicheskikh dannykh. Programma zaregistrirovana v FGU FIPS v otdele registratsii programm dlya EVM № 2014661477 ot 30.10.2014 [The program of two-factor analysis of biological data. The program is registered with FGU FIPS in the department of registration of computer programs No. 2014661477 dated 10.30.2014] (in Russ.).  
  41. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 2007, 73(16): 5261-5267 CrossRef
  42. Ilyaletdinov A.N. Mikrobiologicheskie prevrashcheniya azotsoderzhashchikh soedinenii [Microbiological transformations of nitrogen-containing compounds]. Alma-Ata, 1976 (in Russ.).  
  43. Fog K. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews, 1988, 63(3): 433-462 CrossRef
  44. Bakina L.G. Rol' fraktsii gumusovykh veshchestv v pochvenno-ekologicheskikh protsessakh. Avtoreferat doktorskoi dissertatsii [The role of humic substances in soil-ecological processes. DSc. Thesis]. St. Petersburg, 2012 (in Russ.).  
  45. Mishustin E.N. Mikroorganizmy i plodorodie pochvy [Microorganisms and soil fertility]. Moscow, 1956 (in Russ.).  
  46. Bastian F., Bouziri, L., Nicolardot, B., Ranjard, L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry, 2009, 41(2): 262-275 CrossRef
  47. Sun B., Wang X., Wang F., Jiang Y., Zhang X.X. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl. Environ. Microbiol., 2013, 79(11): 3327-3335 CrossRef
  48. Sait M., Davis K. E. R., Janssen P. H. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol., 2006, 72(3): 1852-1857 CrossRef
  49. Griffiths B. S. Ritz, K., Ebblewhite, N., Dobson, G. Soil microbial community structure: effects of substrate loading rates. Soil Biology and Biochemistry, 1998, 31(1): 145-153 CrossRef
  50. Nicolardot B., Bouziri L., Bastian F., Ranjard L. A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biology and Biochemistry, 2007, 39(7): 1631-1644 CrossRef
  51. Kramer S., Dibbern D., Moll J., Huenninghaus M., Koller R., Krueger D., Marhan S., Urich T., Wubet T., Bonkowski M., Buscot F. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Front. Microbiol., 2016, 7: 1524 CrossRef