doi: 10.15389/agrobiology.2019.1.31eng

UDC 633.111:631.52:633.111.5



I.P. Diordiieva1, I.S. Riabovol1, L.O. Riabovol1, P.N. Rengach2,
S.P. Kotsiuba1, M.A. Makarchyk1

1Uman National University of Horticulture, Department of Genetics, Plant Breeding and Biotechnology, 1, Institutska vul., Uman, Cherkassy region, 20305 Ukraine, e-mail (✉ corresponding author),,,,;
2Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, 86, pos. VNIISS, Ramon Region, Voronezh Province, 396030 Russia, e-mail

Diordiieva I.P.
Rengach P.N.
Riabovol L.O.
Kotsiuba S.P.
Riabovol I.S.
Makarchyk M.A.

Received July 17, 2018


Poor grain quality, mostly low proteins and gluten content, together with worse gluten quality, are the main obstacle to the widespread practical use of triticale. Hybridization of hexaploid triticale with certain Triticum species significantly expands the crop gene pool diversity and facilitates production of new forms with improved quality indicators. Spelt wheat is much suitable for crossing due to high protein content in grain (up to 25 %). The first Ukrainian study on hybridization between hexaploid triticale and spelt wheat was carried out in the Uman National University of Horticulture. The aim of the research was to improve triticale grain by intergeneric hybridization with spelt wheat and characterization of the hybrids for grain quality. The crosses resulted in a collection of more than 500 breeding samples of triticale which were grouped by plant height as medium, dwarf and short-stem forms. The best samples were analyzed for grain quality, i.e. content of proteins and gluten, the gluten quality, the 1000-seed weight and grain unite. Winter triticale Rarytet cultivar was the standard for medium height samples, and Alkid cultivar for low and short stem samples. Our research shows the improvement of triticale grain quality by intergeneric hybridization with spelt. Genotypes No. 455, 468 and 475 of medium height group, together with all dwarf and short-stem samples significantly exceeded the standards in grain protein and gluten content. The samples Nos. 455 (13.9 % protein, 30.2% gluten), 468 (13.0 % protein, 27.1 % gluten) and 473 (12.8 % protein, 28.0 % gluten) outstood for grain protein and gluten concentration. By the set of gluten quality indicators, the samples Nos. 455, 458, 451, 466, 488, 471 and 473 were assigned to group I, the rest of the samples belonged to group II. The samples Nos. 455 (56.0 g), 471 (55.3 g) and 473 (54.7 g) significantly surpass the standard in 1000-seed weight. No significant differences were found between the samples within each group for grain unit values. The highest values have Nos. 455 (700 g/l), 471 (690 g/l), 469 and 473 (685 g/l), 484 (682 g/l). As a result, two genotypes with high indicators of grain quality were selected, i.e. medium height sample No. 455 with protein content 13.9 %, group I gluten 30.2 %, 1000-seed weight 56.0 g, grain unit 700 g/l, and short-stem sample No. 471 with protein content 13.6 %, group I gluten 29.5 %, 1000-seed weight 55.3 g, and grain unit value 690 g/l).

Keywords: Triticosecale Wittmack, hexaploid triticale, Triticum spelta L., spelt wheat, hybridization, protein content, gluten content, 1000-seed weight, grain unite. 


Full article PDF (Rus)

Full article PDF (Eng)



  1. Estrada-Campuzano G., Slafer G.A., Miralles D.J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Research, 2012, 128: 167-179 CrossRef
  2. Grebennikova I.G., Aleinikov A.F., Stepochkin P.I. Vychislitel'nye tekhnologii, 2016, 1: 53-64 (in Russ.).
  3. Rybalka O.I., Morgun V.V., Morgun B.V., Pochinok V.M. Fiziologiya rastenii i genetika, 2015, 2: 95-111 (in Ukr.).
  4. Shchipak G.V. Selektsiya polevykh kul'tur, 2008, 5: 42-88 (in Ukr.).
  5. Dennett.L., Cooper K.V., Trethowan R.M. The genotypic and phenotypic interaction of wheat and rye storage proteins in primary triticale. Euphytica, 2013, 194: 235-242 CrossRef
  6. Leshchenko N.I., Shakirzyanov A.Kh., Myzgaeva V.A., Karachurina G.R. Dostizheniya nauki i tekhniki APK, 2010, 1: 16-19 (in Russ.).
  7. Lukaszewski A.J. Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci., 2007, 46(5): 2183-2194 CrossRef
  8. Grebtsova L.N. Novosti nauki Kazakhstana, 2013, 3: 155-159 (in Russ.).
  9. Ittu Gh., Saulescu N., Ittu M., Mustatea P. Achievements in triticale breeding (× Triticosecale Witt.). I.N.C.D.A. Annals Fundulea, 2007, 75: 73-82.   
  10. Wos H., Brzezinski W.J., Arseniuk E., Zimny J., Wos J. Triticale of improved bread-making quality Proc. 18th EUCARPIA General Congress «Modern variety breeding for present and future needs», 9-12 Sep 2008, Valencia-Spain. Valencia, 2008: 661.
  11. Diordieva I.P., Parii F.N. Geneticheskie resursy rastenii, 2014, 5: 42-53 (in Ukr.)
  12. Grabovets A.I., Fomenko M.A. Zernobobovye i krupyanye kul'tury, 2013, 2(6): 41-47 (in Russ.).
  13. Hills M.J., Hall L.M., Messenger D.F., Graf R.J., Beres B.L., Eudes F. Evaluation of crossability between triticale (× Triticosecale Wittmack) and common wheat, durum wheat and rye. Environ. Biosafety Res., 2007, 6: 249-257 CrossRef
  14. Dvorak J., Deal K.R., Luo M.C., You F.M., Borstel K.V., Dehghani H. The origin of spelt and free-threshing hexaploid wheat. The Journal of Heredity, 2012, 103(3): 426-441 CrossRef
  15. Zielinski H., Ceglinska A., Michalska A. Bioactive compounds in spelt bread. Eur. Food Res. Technolol., 2008, 226: 537-544 CrossRef
  16. Blatter R.H.E, Jacomet S., Schlumbaum A. Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt (Triticum spelta L.). Theor. Appl. Genet., 2002, 104(2-3): 329-337 CrossRef
  17. Guzmán C., Xiao Y., Crossa J., González-Santoyo H., Huerta J., Singh R., Dreisigacker S. Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. Euphytica, 2016, 209: 689-692 CrossRef
  18. Parii F.N., Diordieva I.P. Sozdanie chetyrekhvidovykh form tritikale. Zemledelie i zashchita rastenii, 2015, 5(102): 35-42.
  19. Ng P.K.W., Sconlon M.G., Bushuk W.A. Catalog of biochemical fingerprints of registered Canadian wheat cultivars by electrophoresis and high-perpformanse liquid chromatography. University of Manitoba, Winnipeg, 1988.
  20. Shchipak G.V. V sbornike: Spetsial'naya selektsiya i semenovodstvo polevykh kul'tur [In: Special selection and seed production of field crops]. Khar'kov, 2010: 70-107 (in Russ.).
  21. Ermantraut E.R., Gudz' V.P. Materialy Mezhdarodnoi nauchno-prakticheskoi konferentsii «Sovremennye problemy opytnogo dela» [Proc. Int. Conf. «Current problems of experiment design»]. St. Petersburg, 2000: 13-134 (in Russ.).
  22. Maksimov N.G. Selektsiya i semenovodstvo, 2011, 99: 30-38 (in Russ.).
  23. Pershina A.A., Trubacheva N.V. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(4): 416-425 CrossRef (in Russ.).
  24. Ukalska J., Kociuba W. Phenotypical diversity of winter triticale genotypes collected in the Polish gene bank between 1982 and 2008 with regard to major quantitative traits. Field Crops Research, 2013, 149: 203-212 CrossRef
  25. Ayalew H., Kumssa T.T., Butler T.J., Ma X.-F. Triticale improvement for forage and cover crop uses in the southern great plains of the United States. Front. Plant Sci., 2018, 9: 1130 CrossRef
  26. Barnett R.D., Blount A.R., Pfahler P. L., Bruckner P.L., Wesenberg D.M., Johnson J.W. Environmental stability and heritability estimates for grain yield and test weight in triticale. J. Appl. Genet., 2006, 47: 207-213 CrossRef
  27. Kurkiev K.U. Genetika, 2007, 9: 1269-1272 (in Russ.).