doi: 10.15389/agrobiology.2016.1.3rus

УДК 631.523/.524:581.14:575.1

Работа поддержана Санкт-Петербургским государственным университетом (проект номер 1-38-233-14) и Российским фондом фундаментальных исследований (проект номер 14-04-01-624).

 

МОЛЕКУЛЯРНЫЕ ОСНОВЫ ФОРМИРОВАНИЯ КАРЛИКОВОСТИ У КУЛЬТУРНЫХ РАСТЕНИЙ. СООБЩЕНИЕ I. НАРУШЕНИЕ РОСТА ИЗ-ЗА МУТАЦИИ ГЕНОВ МЕТАБОЛИЗМА И СИГНАЛИНГА ГИББЕРЕЛИНОВ (обзор)

Т.Е. БИЛОВА1, Д.Н. РЯБОВА2, И.Н. АНИСИМОВА2

Создание низкорослых (карликовых) форм зерновых культур, устойчивых к полеганию, привело к значительному повышению урожайности в 1960-1970-х годах и было одной из главных задач «зеленой революции», направленной на преобразования в сельском хозяйстве развивающихся стран (G.S. Khush, 2001). В настоящее время признак карликовости широко используется в селекции. Помимо компактности и устойчивости к полеганию, карликовые формы эффективнее утилизируют питательные вещества и более устойчивы к болезням (К.У. Куркиев с соавт., 2006). В этой связи в последние годы возрастает интерес к изучению факторов, предопределяющих рост растений. Показано, что многие низкорослые сорта, участвовавшие в «зеленой революции», несли мутации в генах, ответственных за метаболизм или передачу сигнала фитогормона гиббереллина (ГА) (M. Ueguchi-Tanaka с соавт., 2001; T. Sakamoto с соавт., 2004). ГА вовлечены во многие этапы развития растения, в том числе прорастание семян, рост стеблей и корней (E. Tanimoto, 2012; P. Hedden, V. Sponsel, 2015). Однако изменения на различных этапах ГА-зависимых процессов могут приводить как к низкорослости, так и к высокому росту. Выявлению ключевых звеньев, целенаправленные изменения в которых приведут к созданию желаемых низкорослых форм, поможет только четкое схематичное понимание взаимодействия генетических и молекулярных механизмов, вовлеченных в ГА-контроль роста растений. В статье рассмотрены пути биосинтеза и деактивации гиббереллинов. Обсуждаются механизмы поддержания пула активных ГА. Среди известных к настоящему времени многочисленных ГA, продуцируемых растениями, физиологически активны только ГА1, ГА3, ГА4, ГА5 и ГА7. В продукцию этих активных гиббереллинов вовлечены ГА20-оксидазы и С3,β-оксидазы (или С3,β-гидроксилазы), катализирующие последние реакции биосинтетического пути. С2,β-оксидазы — основные ферменты, которые могут быстро инактивировать активные ГА посредством добавления к молекуле гидроксильной (–ОН) группы. Проанализированы современные представления о ГА-сигналинге, в который вовлечены рецептор гиббереллинов GID1, негативные регуляторы ГА-сигналинга DELLA-белки, SCF E3-убиквитин-протеин-лигаза и 26S-протеасома, транскрипционные факторы с ДНК-связывающим доменом, гиббереллин-регулируемые гены. Накопленные к настоящему времени данные дают основание предполагать, что в трансдукции гиббереллинового сигнала молекула ГА индуцирует деградацию репрессора DELLA через взаимодействие GID1-DELLA с убиквитин-протеин-лигазным комплексом E3SCFSLY1/GID2 (T.-P. Sun, 2011). Таким образом, низкий рост может быть связан с нарушениями биосинтеза ГА или накоплением репрессоров ГА-сигналинга DELLA-белков, а высокий рост — с повреждением ферментов деактивации ГА или с потерей репрессивной функции DELLA-белков (H. Claeys c соавт., 2014). Обсуждается участие гиббереллина в сложной гормональной регуляции роста растений, которое часто реализуется посредством контроля репрессивной функции DELLA (P. Achard с соавт., 2003). Особое внимание уделяется характеристике мутаций генов, приводящих к изменению роста растений — карликовости или гигантизму.

Ключевые слова: карликовость, торможение роста, гиббереллины, трансдукция гиббереллинового сигнала.

 

Полный текст

 

MOLECULAR BASIS OF THE DWARFISM CHARACTER IN CULTIVATED PLANTS. I. GROWTH DISTORTIONS DUE TO MUTATIONS OF GIBBERELLIN METABOLISM AND SIGNALING (review)

T.E. Bilova1, D.N. Ryabova2, I.N. Anisimova2

Development of dwarf cereal varieties with improved mechanical stability of stems preventing their lodging led to significantly increased crop productivity in the 1960-1970s. The creation of novel high-yielding cultivars was one of the main purposes of the «Green revolution» aimed at the reorganization of agriculture in developing countries (G.S. Khush, 2001). At the current time the dwarfism character is of widely use in plant breeding. The dwarf varieties are not only resistant to lodging but also have higher nutrients-absorbing potential and often are more tolerant to diseases than traditional cultivars (K.U. Kurkiev et al., 2006). In connection with that the factors that predetermine plant growth have become of increasing scientific interest over recent years. Numerous dwarf cultivars produced during the «Green revolution» possessed mutant genes responsible for metabolism and transmission of gibberellic (GA) signal (M. Ueguchi-Tanaka et al., 2001; T. Sakamoto et al., 2004). GAs are involved in control of many stages of plant development, including seed germination, stem and root elongation (E. Tanimoto, 2012; P. Hedden, V. Sponsel, 2015). However, alternations at different steps of the GA-dependent processes might lead to different results: to plants with reduced height as well as to tall slender plants. Clear understanding the interaction of genetic and molecular mechanisms will facilitate the revealing of key molecular targets the changes in which would result in production of the desired dwarf varieties. The paper considers the ways of gibberellins biosynthesis, deactivation and how pool of active GAs is maintained. Among numerous known GAs, produced by plants, only GA1, GA3, GA4, GA5 and GA7 are physiologically active. GA20-oxidases and C3,β-oxidases (or C3,β-hydroxylases) involved in production of the active gibberellins catalyze final reactions of gibberellin biosynthesis. C2,β-oxidases are main enzymes that can quickly inactivate active GAs by adding a hydroxyl group (—OH) to a GA molecule. Modern concept about GA-signaling is reviewed according to the following established steps: GA receptor GID1; DELLA-proteins as the negative regulators in GA signaling; SCF E3-ubiqutin protein ligase and 26S proteasome; transcriptional factors with DNA-binding site; GA-regulated genes. Accumulated up-to-date data consider that in transmission of gibberellic signal a GA molecule initiates DELLA-protein degradation via interaction of GID1-DELLA complex with E3 SCFSLY1/GID2 (T.-P. Sun, 2011). Thus, reduced growth in dwarf cultivars can be associated with defects in biosynthesis of the active GAs or with accumulation of repressors of GA signaling, the DELLA-proteins, while GA-constitutive growth in tall slender forms might be caused by disturbance in work of GA-deactivation system or lack of the DELLA repressive function (H. Claeys et al., 2014). The paper also considers ways of participation of gibberellin in the complex hormone regulation of plant growth which occurs often via control over the repressive function of DELLA-proteins (P. Achard et al., 2003). A special attention is paid to characteristics of the genes that lead to altering plant growth, the dwarfism or gigantism.

Keywords: dwarfism, restrained growth, gibberellin signal transduction, receptor GID1, DELLA protein, proteolysis.

 

1ФГБОУ ВПО Санкт-Петербургский
государственный университет,
199034 Россия, г. Санкт-Петербург, Университетская наб., 7-9,
e-mail: bilova.tatiana@gmail.com;
2ФГБНУ ФИЦ Всероссийский институт
генетических ресурсов растений им. Н.И. Вавилова,

190000 Россия, г. Санкт-Петербург, ул. Большая Морская, 42-44,
e-mail: rdash@mail.ru, irina_anisimova@inbox.ru

Поступила
в редакцию
13 января 2015 года

 

Оформление электронного оттиска

назад в начало